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Abstract

This work  deals  with  rasterizing  of  curves.  This  process converts  continues  geometric 
curves of the vector format into images of discrete pixels. Rasterizing is a fundamental task 
in computer graphics. The problem is illustrated on lines based on established methods. 
A common method is developed on the basis of the implicit  equation of the curve. This 
principle is then proven on circles and ellipses. Subsequently the algorithm is applied on 
more complex curves like Béziers. This algorithm selects the closest mesh pixel to the true 
curves and makes it  possible to draw complex curves nearly as quickly and easily as 
simple  lines.  The  thereby  emerging  problems  are  considered  and  various  solutions 
outlined. The method is then applied on quadratic and cubic Beziers of non-rational and 
rational forms as well as splines. Finally a common algorithm is established to draw any 
curve.

Keywords: grafic, rasterizing, curves, algorithms, Bézier, spline

Kurzfassung

Diese Arbeit beschäftigt sich mit der Rasterung von Kurven. Dabei werden kontinuierliche 
geometrische  Kurven  vom  Vektorformat  in  Bildern  aus  diskreten  Pixel  umgewandelt. 
Rasterung  ist  eine  grundsätzliche  Aufgabe  in  der  Computergrafik.  Das  Problem  wird, 
ausgehend von etablierten Verfahren, an Linien erläutert.  Danach wird ein allgemeines 
Verfahren anhand der impliziten Gleichung der Kurve erarbeitet. Dieses Prinzip wird dann 
an  Kreisen  und  Ellipsen  erprobt.  Anschließend  wird  der  Algorithmus  an  komplexeren 
Kurven wie Béziers ausgearbeitet.  Der Algorithmus wählt jenes Pixel, welches der Kurve 
am nächsten liegt  und ermöglicht  es komplexe Kurven fast  so einfach und schnell  zu 
zeichnen wie einfache Geraden.  Die dabei entstehenden Probleme werden erörtert und 
unterschiedliche Lösungen entworfen. Das Verfahren wird danach an quadratischen und 
kubischen Béziers in nicht-rationaler und rationaler Form, sowie zum Zeichnen von Splines 
angewendet.  Schließlich  wird  ein  allgemeiner  Algorithmus  für  beliebige  Kurvenformen 
aufgestellt. 

Schlagwörter: Grafik, Rasterung, Kurven, Algorithmus, Bézier, Spline
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1 Introduction
Vector graphics are used in computer aided geometric design. Vector graphics are based 
on geometrical primitives such as points, lines, circles, ellipses and Bézier curves [Foley, 
1995]. However, to be useful every curve needs to be rasterized one time on displays, 
printers, plotters, machines, etc. About fifty years ago J. E. Bresenham of the IBM laborat-
ories developed an algorithm for plotters to rasterize lines [Bresenham 1965]. The problem 
was that processors at that time had neither instructions for multiplications or divisions nor 
floating point arithmetic. He found an algorithm to rasterize a line on a uniform grid of pixel  
using integer addition and subtraction. Later on he extended this algorithm for circles.

The algorithm of this document improves Bresenham's line algorithm and expands it for 
ellipses and Bézier curves. 

Features of the rasterising algorithm:

• Generality: This algorithm plots lines, circles, ellipses, Bézier curves, etc.

• Efficiency: Plots complex curves close to the speed of drawing lines. 
• Simplicity: The pixel loop is only based on integer additions.

• Precision: No approximation of the curve.

The principle of the algorithm could be used to rasterize any curve.

Chapter one gives an introduction to the drawing algorithms. A common drawing algorithm 
is introduced and applied on lines. In chapter two the algorithm is worked out on circles 
and lines. Chapter three uses the algorithm on quadratic Bézier curves and explains prob-
lems that appear. Different solutions are worked out which are also applied on rational 
quadratic  Béziers  in  chapter  four.  Chapter  five  examines  the  cubic  Bézier  curve  and 
develops a drawing algorithm. The rational cubic Béziers in chapter six are plotted by an 
approximation. Chapter seven applies the developed algorithm to draw splines. The work 
conludes with a compilation of the algorithm and possible implications are explained. 

All curve algorithms also contain an example implementation so that everyone can test the 
algorithm immediately. 

1.1 Curve drawing
At first several definitions and differentiations which are used throughout this work will be 
given. 

For  example,  several  representations  are  possible  to  define  a  planar  curve  of  two 
dimensions. Certain definitions are better suited to drawing algorithms than others.
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Explicit curve function:
The  explicit  equation  defines  one  variable  as  a  function  of  another  y = f(x).  This 
representation tends to be unsuitable for rasterizing since it is possible that a function may 
have more than one y-value for a certain x-value. The circle is an example for such a 

curve.  The function y=√(r2− x2) only defines the upper half  of  the circle.  The whole 

circle therefore needs two function definitions.

Implicit curve function:

The implicit equation of a curve is the zero set of a function of two variables f(x,y) = 0. The 
algebraic curves considered in this work can be represented by bivariate polynomials of 

real coefficients: f x , y =∑
i
∑

j
aij x i y j=0 [i j≤n ].

Every point (x, y) on the curve fulfills this equation.

The maximum value of n of the equation defines the degree of the implicit function.

Parametric curve function:

The parametric equation of a curve is a vector valued function of a single variable. Points 
on the curve are defined by the values of the two functions x = fx(t) and y = fy(t) at the para-
meter values of t. A restricted interval of the parameter t defines a limited curves segment.

Certain curves like Béziers can be more easily defined by parametric representation than 
by others. It also enables a quick computation of the (x, y) coordinates on the curve for 
drawing purposes. 

Gradient of curves:

The slope or gradient of a curve at point (x, y) is defined as the first derivative of the func-
tion:  dy/dx. A drawing algorithm may rely on a continuously rising or falling curve. It may 
therefore be necessary to subdivide a curve where the drawing direction changes. These 
stationary points are the maximum and minimum on the curve where the slope of the curve 
is horizontal or vertical. These points could be calculated by setting the derivative of the 
function to zero in the x- or y-direction.

Certain algorithms also need different procedures for slopes below or above a value of 
one. Since if the gradient is below one the x-step always happens and a conditional y-step 
is necessary. If the slope is above one then the y-step is used and a conditional x-step is 
necessary.

Vector graphic versus pixel image:

The visual world of electronic multimedia consists of two opposite areas: image processing 
and computer graphics. [Foley, 1995]
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The one side brings images of the real world into the computer. Still or movie cameras are 
used to make images which could be processed by computers. The other side creates arti-
ficial images inside the computer and brings them into the real world. These images are 
made with the help of computer aided design (CAD). [Foley, 1995]

Real world images consist of a two dimensional matrix of picture elements (pixels). Each 
pixel holds the information of the color at that specific position. Information which is not 
captured at the time of the record is lost forever. It is for example not possible to increase 
the resolution of an image later on to increase the details.

Artificial  images  generated  by  the  computer  mainly  use  geometric  primitives  such  as 
points, lines, areas, volumes etc. Vector graphic holds the information of the position in two 
or three dimensions plus attributes like line color,  thickness, type,  etc.  This information 
does not depend on a certain resolution. [Foley, 1995]

Fonts are a good example for vector graphics. Regardless of where you read this work the 
letters of this text consist of vector graphic and had to be rasterized to pixel images so you 
can read the text.

1.2 Rasterizing
Vector graphics are only numbers handled by the computer. To visualize vector graphics 
they must be digitized into a grid of pixel. This conversion is called rasterizing. Whereas 
the conversion of pixel images to vector graphics is difficult, the other way is comparatively 
simple.  That  is  a  benefit  since rasterizing  is  needed every time to make the numbers 
visible. Rasterizing is required for all output devices like monitors, beamers, printers, plot-
ters, etc. Computational efficiency is therefore an important goal of this work. [Foley, 1995]

It is not possible to mention all works related to rasterizing. A few of the recent publications 
together with main ideas follow as an inspiration for possible algorithms.

1.2.1 Related work
Foley describes two ways to draw a parametric curve [Foley, 1995]. The first is by iterative 
evaluation of fx(t) and fy(t) for incrementally spaced values of t. The second is by recursive 
subdivision until the control points get sufficiently close to the curve. Both methods have 
their benefits and disadvantages. This document describes a third way by transforming the 
parametric equation of the curve into the implicit equation and drawing the curve by iter-
ative evaluation of the implicit equation. 

Let's start with a simple line. How can a line from P0 to P1 be rasterized? Going through all 
x-positions of the pixels of the line, the y-positions can be calculated by 

 y = (x-x0)(y1-y0)/(x1-x0)+y0.

This method has a drawback. It needs floating point multiplication and division. That may 
not seem to be difficult to calculate. But is it possible to do it more efficiently?
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The expression to calculate the y position contains the ratio Δx/Δy of the slope. Instead of 
a fraction it is possible to make the calculation by the integer numbers of numerator and 
denominator. This solution avoids floating pointing calculations.

Every x-step the y difference is added. If the expression is larger than the x-difference this  
difference  is  subtracted  and  a  y-step  is  made.  This  algorithm  is  called  Bresenham 
algorithm. [Bresenham, 1965]

But this solution only works if the y-difference is smaller than the x-difference. For the other 
case a second procedure with exchanged coordinates is necessary. This algorithm steps 
through  all  y-positions  and  calculates  the  corresponding  x-positions.  The  need  of  two 
different procedures for the same algorithm is a handicap for simplification and extension 
to use it for more complex curves.

[Loop  et  al.,  2005]  presents  a  resolution  independent  drawing  algorithm  which  uses 
programmable  graphics  hardware  to  perform  the  rendering.  This  approach  has  the 
advantage that anti-aliasing could also be calculated by the graphical processor .

The algorithm of this document focuses on curves up to the polynomial degree of three. 
Higher polynomial degrees contain multiple singular points or close curve segments which 
cannot  be handled by the algorithm and need special  solutions.  Such curves could be 
drawn  by  algorithms  of  sub-pixeling  worked  out  by  [Emeliyanenko,  2007]  or  distance 
approximations in the work of [Taubin, 1994]. 

This solution of the drawing algorithm is similar to the work Yang [Yang et al., 2000] and 
Kumar [Kumar et  al.,  2011].  The main difference to their  work  is  that  instead of  eight 
different procedures for every octant of the drawing direction, a common algorithm for any 
direction is developed. This makes the algorithm more compact.

1.2.2 Midpoint algorithm
The line in Figure 1 should be drawn. Pixel P is already set. For simplification the slope of 
the line is assumed to be between zero and one. Under these conditions only two pixels 
are possible to be set next: PX or PXY. The decision which one should be set could be made 
by the distance of the line to the pixel center. If the line is closer to Pixel PX then this pixel 
is set. Otherwise pixel PXY is set. Instead of the distance to the line the implicit function of 
the curve is used  f(x ,y)=0 . The function is zero for points on the line. It is positive for 
points at the upper left side and negative for points at the lower right side. The criteria 
could  therefore  be  made by  the  value  of  the  implicit  function  at  the  point  PM exactly 
between PX and PXY. If the function on Point PM is positive point PXY is set, if it is negative 
point PX is set. Since the value of the midpoint between the two pixels is defined as the 
decision this algorithm is called midpoint algorithm. [Foley, 1995]
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Figure 1: Midpoint algorithm

This  method is  limited to  slopes  between  zero  and one.  In  case of  the  line  a  similar 
algorithm is needed for slopes above one to decide between the points PXY and PY. 

1.2.3 Horner's algorithm
Another  way  of  drawing  complex  curves  is  forward  differencing  by  Horner's  algorithm 
[Foley, 1995]. This algorithm calculates the value of a function just by adding the difference 
to the previous value: f(t+Δt) = f(t)+d. If the function is a polynomial of degree one f(t) = a1 

t+a0 the difference is only a constant value: d1 = Δt a1. For degree n polynomials the differ-
ences make successive additions: di = di+di+1. The initialization values of di could be calcu-
lated by the differences of the function  f(t). If this algorithm is applied on the parametric 
equation of the curve x = fx(t) and y = fy(t) the coordinates of Béziers for example could be 
calculated only by additions. The problem with this algorithm is to choose an appropriate 
step size Δt. If this step is too large a few pixels are omitted and if it is too small the same 
pixel is set multiple times. 

Horner's algorithm is not limited to lines. It could be used for other curves too. The implicit 
function of the curve is needed. Starting at position P every octant of the drawing direction 
needs a decision if the pixel in one of the eight appropriate direction should be set or not. 
This document somehow applies Horner's algorithm on the implicit equation of the curve.

Another way of rastering a curve is approximation. The curve is subdivided into short lines 
and each line is plotted separately. But approximation also means to choose one of two 
disadvantages. If the approximation should be accurate the curve must be divided in many 
small segments. This is computationally expensive. On the other hand the curve becomes 
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edgy if the approximation is not accurate enough. A fast and accurate rasterizing algorithm 
for curves is therefore desirable.

1.3 Problem definition 
The implicit  equation  f(x,y) = 0 defines a curve from the point P0(x0,y0)  to P1(x1,y1).  The 
gradient of the curve must continuously be either positive or negative. This restriction is 
solved by subdividing of the curve.

The curve could be a straight line, but also be part of  an ellipse or a  Bézier curve for 
example.

The curve in  figure  2 should be digitized into a grid of pixel.  This conversion is called 
rasterizing.

Which pixel on the grid should be set next to represent the curve in figure 2 most suitably?

1.4 General solution
An error e of the pixel p is introduced by the algorithm as a measurement for the deviation 
of the pixel from the curve: e = f(x,y). The error value is zero for pixels exactly at the curve, 
positive for one side and negative for the other side of the curve. This error calculation is 
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used for the decision which pixel should be set next. Starting by pixel p only between three 
possible pixel could be chosen for the next pixel because of the positive gradient:  PX or 
PXY. 

The algorithm starts with the assumption that point PXY will be set next. So if the error |exy| 
of point PXY is lesser than the error |ex| of pixel PX than the x direction will be incremented. 
The same decision is considered for the y direction. If the error |exy| of PXY is lesser than the 
error |ey| than the y direction will be incremented. That's why in figure 2 the pixel above P is 
labeled PX and besides P is labeled PY.

Since  a  positive  gradient  is  assumed and  the  error  on  one  side  of  the  curve  will  be 
negative, the unequation ex ≥ exy ≥ ey will always be true which makes it possible to avoid 
the calculation of the absolute value for the comparison. The conditions for the increments 
are now:

if ex + exy > 0 then increment x
if ey + exy < 0 then increment y

The benefit of this approach is that the error of the present pixel is already known, so only 
the difference to the previous pixel has to be calculated. And this computation is more effi-
cient to implement than calculating the entire expression for every pixel.

The error of the next pixel has to be calculated for all three possibilities of the actual pixel  
P: ex, ey and exy. Could that be further reduced? If the algorithm doesn't track the error e of 
the current pixel p but the error exy of the next diagonal pixel PXY then only two error calcu-
lations had to be done: ex and ey. Because the error e is not available ex and ey must be 
calculated as one pixel less from the actual error.

1.5 Pseudo code of the algorithm
The calculation of the error value depends on the curve function but the condition for the 
increment will always be the same.

set up x, y to x0, y0

set up error variable exy for P(x0+1,y0+1)
loop

set pixel x, y 
if ex + exy > 0 then increment x, sub difference error 
if ey + exy < 0 then increment y, add difference error 

loop until end pixel

Listing 1: Pseudo code of the algorithm

Please note that if the condition is true the difference error must be calculated after the 
increment is made since the error calculation always looks one diagonal pixel ahead. 

Page 11 of 81



Rasterizing algorithm Alois Zingl

A few algorithms in this document contain many details. Not all are explicitly mentioned in 
the  text.  Certain  minor  implementation  solutions  could  be  better  and  more  concisely 
explained by sample code. The programming language C is used since it could be easily 
converted to other languages. Drawing curves also is a system task and most operating 
systems are  written  in  this  language.  The examples  make it  also  possible  to  test  the 
algorithm immediately.

The bit size of the variables is sometimes critical and is assumed to be at least 16 bit for  
int, 32 bit for long or float and 64 bit for double.

1.6 Straight lines
The implicit equation for a straight line from point P(x0,y0) to P(x1,y1) is: 

(x1–x0)(y–y0)–(x–x0)(y1–y0) = 0 (1)

With the definition of dx = x1–x0 and dy = y1–y0 the error e makes then: 
e = (y–y0)dx–(x–x0)dy.

The following calculations are simple but a bit confusing because of the indexes and the 
signs.

The error of the diagonal step makes: exy = (y+1–y0)dx–(x+1–x0)dy = e+dx–dy.

The error calculations for the x and y directions make: ex = (y+1–y0)dx–(x–x0)dy = exy+dy and 
ey = (y–y0)dx–(x+1–x0)dy = exy–dx. 

The error for the first step makes: e1 = (y0+1–y0)dx–(x0+1–x0)dy = dx–dy.

Figure 3 shows a line with dx = 5 and dy = 4. The error value of the cyan pixel is 1. The 
three  gray  pixels  are  possible  next  choices.  Increase  in  x-direction  subtracts  4  (dy), 
increase in y-direction adds 5 (dx) to the error value. The dark gray pixel has the lowest 
absolute  value.  It  is  calculated in  advance since the error  value is  one diagonal  pixel 
ahead.
Since exy+ey = +2–3 = –1 is less than zero the y direction is increased and dx added to the 
error value. The same is done for the other direction:  exy+ex = +2+6 = +8 is greater than 
zero, so the x-direction is increased and dy subtracted from the error value.

Page 12 of 81



Rasterizing algorithm Alois Zingl

Although the x and y direction seemed to be interchanged in figure 3 they are actually not. 
Just the error increment for the test condition is interchanged.

1.7 Program to plot a line
There are different possibilities to handle negative gradients or reversed lines. The solution 
used here is to negate the step direction.

void plotLine(int x0, int y0, int x1, int y1)
{
   int dx =  abs(x1–x0), sx = x0<x1 ? 1 : –1; 
   int dy = –abs(y1–y0), sy = y0<y1 ? 1 : –1; 
   int err = dx+dy, e2;                        /* error value e_xy */
 
   for (;;){                                               /* loop */
      setPixel(x0,y0);
      e2 = 2*err;
      if (e2 >= dy) {                              /* e_xy+e_x > 0 */
         if (x0 == x1) break;
         err += dy; x0 += sx; 
      }
      if (e2 <= dx) {                              /* e_xy+e_y < 0 */
         if (y0 == y1) break;
         err += dx; y0 += sy; 
      }
   }
}

Listing 2: Program to plot a line
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There is no approximation by the algorithm. So the error value of the last pixel is always 
exactly  zero.  This  version is  optimized  to  check for  end-of-the-loop  only  if  the  corres-
ponding direction is incremented. 

Because this algorithm works in x and y direction symmetrically it needs an additional if  
condition in the pixel loop, one more than the traditional Bresenham's line algorithm. It is 
possible to avoid this additional condition if it is known in advance that the gradient of the 
line is always below or above one.

The program also elegantly illustrates the xy-symmetry of Bresenham's line algorithm. The 
same considerations could now be applied to curves of higher polynomial degree.
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2 Ellipses 
Wouldn't it  be easier to start with the symmetric circle instead of the more complicated 
expression of the ellipse?

It would be, but only a bit. The calculations for ellipses are not so difficult so the solution 
can easily be adapted for circles by stetting a = b = r and had not to be done again.

By a proper choice of the coordinate system an ellipse can be described by the implicit 
equation:  x2b2+y2a2–a2b2 = 0 (2)

The equation for the error calculation for the pixel is therefore: e = x2b2+y2a2–a2b2.

The error of the next diagonal pixel x+1, y+1 makes: 
exy = (x+1)2b2+(y+1)2a2–a2b2 = e+(2x+1)b2+(2y+1)a2 .

The error of the next  pixel  x+1 makes:  ey = (x+1)2b2+y2a2–a2b2 = exy–(2y+1)a2 and for  y+1:  
ex = x2b2+(y+1)2a2–a2b2 = exy –(2x+1)b2.

The ellipse is subdivided into four quadrants. The second quadrant is used because of the 
positive gradient. It starts at pixel P(–a,0) and ends at P(0,b). 

The error of the first pixel is therefore: e1 = (–a+1)2b2+(0+1)2a2–a2b2 = a2–b2(2a–1).

We are now able to build the algorithm.
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2.1 Program to plot an ellipse
With these preparations it is easy to write the algorithm down. But the ellipse needs special 
treatment if it is very flat.

void plotEllipse(int xm, int ym, int a, int b)
{
   int x = –a, y = 0;   /* II. quadrant from bottom left to top right */
   long e2 = (long)b*b, err = x*(2*e2+x)+e2;       /* error of 1.step */
 
   do {
       setPixel(xm–x, ym+y);                         /*   I. Quadrant */
       setPixel(xm+x, ym+y);                         /*  II. Quadrant */
       setPixel(xm+x, ym–y);                         /* III. Quadrant */
       setPixel(xm–x, ym–y);                         /*  IV. Quadrant */
       e2 = 2*err;
       if (e2 >= (x*2+1)*(long)b*b)                   /* e_xy+e_x > 0 */
          err += (++x*2+1)*(long)b*b; 
       if (e2 <= (y*2+1)*(long)a*a)                   /* e_xy+e_y < 0 */ 
          err += (++y*2+1)*(long)a*a;
   } while (x <= 0);
 
   while (y++ < b) {           /* to early stop of flat ellipses a=1, */
       setPixel(xm, ym+y);                /* -> finish tip of ellipse */
       setPixel(xm, ym–y); 
   }
}

Listing 3: Simple program to plot an ellipse

The algorithm stops too early when the radius a of the ellipse equals one. In such cases 
the strategy of looking ahead fails because it tests the pixel of the adjacent quadrant at the 
end. On normal condition this doesn't matter since the ellipse is already finished. But for 
a = 1 the algorithm has to finish the tip of the ellipse by an additional loop (lines 18-21 in 
listing 3).

The algorithm could be concatenated to draw four consecutive quadrants of the ellipse, 
which is necessary for plotters. This way it is also possible to draw just a certain arc of an  
ellipse from angle α to β. Only the start position and the error values need to be calculated 
differently.

The value of the error could get huge. Its variables (and the comparison with them) must 
be able to hold the triple word size of the radii a, b to avoid an overflow. (If a,b have 16 bit 
then err must have 48 bit at least.)
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2.2 Optimized program to plot an ellipse
The algorithm could be further optimized for speed by introducing two additional increment 
variables.

void plotOptimizedEllipse(int xm, int ym, int a, int b)
{
   long x = –a, y = 0; /* II. quadrant from bottom left to top right */
   long e2 = b, dx = (1+2*x)*e2*e2;              /* error increment  */
   long dy = x*x, err = dx+dy;                    /* error of 1.step */
 
   do {
       setPixel(xm–x, ym+y);                        /*   I. Quadrant */
       setPixel(xm+x, ym+y);                        /*  II. Quadrant */
       setPixel(xm+x, ym–y);                        /* III. Quadrant */
       setPixel(xm–x, ym–y);                        /*  IV. Quadrant */
       e2 = 2*err;
       if (e2 >= dx) { x++; err += dx += 2*(long)b*b; }    /* x step */
       if (e2 <= dy) { y++; err += dy += 2*(long)a*a; }    /* y step */ 
   } while (x <= 0);
 
   while (y++ < b) {    /* to early stop for flat ellipses with a=1, */
       setPixel(xm, ym+y);               /* -> finish tip of ellipse */
       setPixel(xm, ym–y); 
   }
}

Listing 4: Optimized program to plot an ellipse

Of course it is also suitable to introduce variables for the constants of 2b2 and 2a2.

This algorithm makes the drawing of an ellipse as easy as drawing a line: only integer 
addition and subtraction are necessary. 

There is no approximation done by the algorithm. The error value of  the last pixel  will 
always be exactly zero.

2.3 Rasterizing circles
The previous algorithm could be changed to draw a circle by setting a = b = r. The calcula-
tion of the error value could be simplified by dividing it by r2.

But some circles like that in figure  5 are looking strange with additional points. Is some-
thing wrong with the algorithm?

Only four pixels at the 45 degree diagonals are affected when x equals y. 

A closer examination of the error values in figure 5 shows that the points in question have 
a lower absolute value than the adjacent pixel.
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From the algorithm's point of view the four suspicious pixels must be set because they are 
closest to the circle. The problem occurs since this is the point where the gradient of the 
circle changes from below to above 45 degree. That is the reason why the adjacent pixels 
also have to be set since they have a lower error value than the alternatives. So nothing is 
wrong with the algorithm, just unfortunate mathematical coincidence.

For which circles do the spurious pixels appear? The sequence of numbers of the radii is 
curious: 4, 11, 134, 373, 4552, …

According to the On-Line Encyclopedia of Integer Sequences (http://oeis.org/A055979) the 

rule for odd n makes: 38
n1−3−8n1−238n−3−8n

28
and for 

even n: 38n1−3−8n1−238n−1−3−8n−1
68

.  (3)

Is it possible to avoid these spurious pixels although they appear rarely? 

One simple way would be by adding the constant value one to the variable err at the initial-
ization making all radii a bit smaller. But this also changes certain other circles, especially 
small ones look strange then.

In normal cases these additional pixel will hardly be noticed. 
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Figure 5: spurious pixel on a circle of radius 4
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This problem will occur on other curves too.

One possibility  to avoid the unwanted pixels  is  to include an additional  'spurious pixel' 
check when y is incremented. These additional pixel occur on y steps when no second y 
step is done (and no x step happens). An additional error check looking one pixel ahead 
avoids the spurious pixel.

void plotCircle(int xm, int ym, int r)
{
   int x = –r, y = 0, err = 2–2*r; /* bottom left to top right */ 
   do {
      setPixel(xm–x, ym+y);             /*   I. Quadrant +x +y */
      setPixel(xm–y, ym–x);             /*  II. Quadrant -x +y */
      setPixel(xm+x, ym–y);             /* III. Quadrant -x -y */
      setPixel(xm+y, ym+x);             /*  IV. Quadrant +x -y */
      r = err;
      if (r <= y) err += ++y*2+1;              /* e_xy+e_y < 0 */
      if (r > x || err > y)   /* e_xy+e_x > 0 or no 2nd y-step */
         err += ++x*2+1;                      /* -> x-step now */
   } while (x < 0);
}

Listing 5: Circle program to avoid spurious pixel

In contrast to the ellipse the circle algorithm also avoids setting certain pixels twice. It could 
be further changed to eight octants setting 8 pixels per loop and looking much like other 
circle algorithms.

2.4 Squaring the ellipse
Some-times  an  algorithm is  needed  to  plot  circles  or  ellipses  where  the  corners  of  a 
surrounding rectangle are specified instead of center and radius. This would also include 
circles or ellipses with a diameter of odd pixels, something the algorithms before were not 
able to do.

The algorithm must calculate on a grid of double resolution to plot such ellipses. On this 
grid the algorithm always takes double steps. If the radius b has a fraction of ½ then the 
y-direction starts with an offset yb of one, if it is an integer the offset is zero.

The error of the next diagonal pixel x+2, y+2 makes: exy = (x+2)2b2+(y+2)2a2–a2b2.

The error of the next pixel x+2 makes: ey = (x+2)2b2+y2a2–a2b2 = exy–4(y+1)a2 and for y+2: 
ex = x2b2+(y+2)2a2–a2b2 = exy –4(x+1)b2.

The error of the first pixel is therefore: e1 = (–a+2)2b2+(yb+2)2a2–a2b2 = (yb+2)2a2–4(a–1)b2.
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2.5 Program for an ellipse inside a rectangle
This is the optimized version to plot an ellipse inside a specified rectangle. Instead of 64-bit 
integer it uses floating point arithmetic to avoid an overflow in the error calculation. It also 
uses an additional check of the x-step to avoid spurious pixels.
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void plotEllipseRect(int x0, int y0, int x1, int y1)
{                       /* rectangular parameter enclosing the ellipse */
   long a = abs(x1–x0), b = abs(y1–y0), b1 = b&1;          /* diameter */
   double dx = 4*(1.0–a)*b*b, dy = 4*(b1+1)*a*a;    /* error increment */
   double err = dx+dy+b1*a*a, e2;                   /* error of 1.step */

   if (x0 > x1) { x0 = x1; x1 += a; } /* if called with swapped points */
   if (y0 > y1) y0 = y1;                           /* .. exchange them */
   y0 += (b+1)/2; y1 = y0–b1;                        /* starting pixel */
   a = 8*a*a; b1 = 8*b*b;

   do {
      setPixel(x1, y0);                               /*   I. Quadrant */
      setPixel(x0, y0);                               /*  II. Quadrant */
      setPixel(x0, y1);                               /* III. Quadrant */
      setPixel(x1, y1);                               /*  IV. Quadrant */
      e2 = 2*err;
      if (e2 <= y) { y0++; y1––; err += dy += a; }           /* y step */
      if (e2 >= x || 2*err > dy) { x0++; x1––; err += dx += b1; } /* x */
   } while (x0 <= x1);

   while (y0–y1 <= b) {          /* to early stop of flat ellipses a=1 */
      setPixel(x0–1, y0);                  /* -> finish tip of ellipse */
      setPixel(x1+1, y0++);
      setPixel(x0–1, y1); 
      setPixel(x1+1, y1––); 
   }
}

Listing 6: Program to plot an ellipse enclosed by a rectangle

This algorithm works for all values of x0, y0, x1 and y1. 

The algorithm for rotated ellipses is developed later since the direct drawing algorithm runs 
into troubles but could be implemented by using rational Béziers.
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3 Quadratic Bézier curves
The concept of universal curves were independently developed by the French engineers 
Pierre Étienne Bezier from Renault and Paul de Faget de Casteljau from Citroën at the 
advent  of  the  computer  aided  manufacturing  in  the  car  industry  to  design  automobile 
bodies. [Bézier, 1986] [Casteljau, 1963]

Bézier curves consist of a set of control points. The number of points define the order of 
the curve.

The general Bézier equation of order n in parametric form given n +1 points Pi is defined to 
be [Marsh, 2005, p. 135]

(4)

This is a straight line for order n = 1. For order n = 2 this is the quadratic Bézier curve   

B2t =1−t 2 P02 1−t  t P1t 2 P2. (5)

The conical implicit equation of the Bézier curve is needed for the algorithm.  
The general implicit equation of degree 2 makes:  

A x22 B x yC y22 D x2 E yF=0.

This  equation  has  six  unknown  coefficients  so  six  linearly  independent  equations  are 
needed to derive the unknowns. If F is non zero the equation could be divided by F:  

a x22b x yc y22d x2e y1=0 leaving five unknowns. 

Two could be derived by setting x = x0 → y = y0 and x = x2 → y = y2:  

a x0
22 b x0 y0c y0

22 d x02 e y0=−1 and a x2
22b x2 y2c y2

22 d x22 e y2=−1.
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Figure 7: Bézier curve of degree 2
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A third could be derived from the parametric form by setting t = ½: 

B212 =P02P1P2

4

a x02 x1 x2
22b x02 x1 x2 y02 y1 y2c  y02 y1 y2

2... (6)

...8d x02 x1 x28e  y02 y1 y2=−16

The last two unknowns are computed by the derivative of the implicit equation:  
∇ x , y=〈2 a x2b y2 d ,2b x2c y2e 〉

By the gradients at the two points P0:
x0−x1

y0− y1
=

a x0b y0d
b x0c y0e and P2:

x2−x1

y2− y1
=

a x2b y2d
b x2c y2e the equations for the last two unknowns could be derived:

a x0x0− x1b  y0x0− x1 x0  y0− y1c y0 y0− y1d x0− x1e  y0− y1=0
a x2x2−x1b y2x2−x1 x2 y2− y1c y2 y2− y1d  x2−x1e  y2− y1=0

The computations of the unknowns get a bit difficult now. Could they be simplified? By the 

substitution of P i=Pi−P1 the Bézier curve is shifted by the offset of –P1. It is no problem 

for the algorithm to shift it back later. So for the simplification of this computation point P1 is 
assumed to be at the origin: x1=y1=0 and the values of  x1 and y1 are subtracted from 

the other points: x i= x i−x1 . The system of five linear equations could now be written as 
the matrix equation 

[ x0
2 2 x0 y0 y0

2 2 x0 2 y0

x2
2 2 x2 y2 y2

2 2 x2 2 y2

 x0x2
2 2 x0x2 y0y2  y0 y 2

2 8  x0x 2 8  y0y2
x0

2 2 x0 y0 y0
2 x0 y0

x2
2 2 x2 y2 y2

2 x2 y2

]⋅[abcde ]=[−1
−1
−16

0
0
] (7)

This matrix equation can be solved like below:  

A= y0 y 2
2 ,B=− x0x2 y0y2 ,C=x0x2

2 ,

D= y0− y2 x0 y2−x2 y0 , E=− x0−x2 x0 y2−x2 y0 , F= x0 y2−x2 y0
2 .

The  implicit equation of the quadratic Bézier curve for x1=y1=0  makes:

x2 y0y2
2−2 x y  x0x 2 y0y2 y2 y0 y2

2

2x  y0− y2− y  x0−x2 x0 y2−x2 y0 x0 y2−x2 y0
2=0.

The overall curvature of the Bézier curve is defined by
cur=x0 y2−x2 y0=x0− x1 y2− y1−x2−x1 y0− y1 . (8)

The previous substitutions could be added again. By some computations the  implicit equa-
tion of the quadratic Bézier curve is simplified to:  
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(x ( y0−2 y1+ y2)− y( x0−2 x1+ x2))
2+ 2(x ( y0− y 2)− y ( x0−x2))cur+ cur 2=0. (9)

The quadratic Bézier curve is part of a parabola.

3.1 Error calculation
The plotting algorithm relies on a continuously positive (or negative) gradient of the curve 
(the slope is either rising or falling). Since point P1 is the point at the origin P0 must be 
in the third quadrant and P2 in the first quadrant for a positive gradient. The following 
conditions are always true then: x1=y1=0, x0≤0≤x2 and y0≤0≤y2 .

It is no problem to fulfill this requirement since the Bézier curve could be subdivided at the 
point where the sign of the gradient is changing, drawing two curves one after another.

The equation for the error calculation of the Bézier curve makes:  

e x , y = x  y0y2− y  x0x2 x0 y2−x 2 y0
2−4 x y2− y x2 x0 y2−x2 y0

which is  equivalent to  

e x , y = x  y0y2− y  x0x2− x0 y2−x 2 y0
24 x y0− y x0 x0 y2−x2 y0 .

Figure 8: Error values of a quadratic Bézier curve

Only the changing terms of the step increment are of interest for the algorithm because the 
other terms remain constant during the pixel loop.

The initial values of these changing terms are the differences of the implicit equation and 
computed as follows:
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d x=e  x±1, y −e  x , y =1±2 x  y0y2
2∓2 y  x0x2 y0y2±2cur  y0−y2 ,

d y=e x , y±1−e  x , y =1±2 y  x0x2
2∓2 x  x0x2 y0 y 2∓2cur  x0−x2.

Since this  Bézier curve is of second degree the increment error changes each step too. 
Not only the error of the calculation has to be incremented according to the steps, but also 
the increment of dx and dy itself changes each step. In case of a quadratic polynomial this 
could also be computed by the second derivative.

For the step in x-direction the increment dx is increased about

d xx=e x2, y−2e x1, y= ∂
2e
∂ x2=2 y0y2

2=2 y0−2 y1 y2
2 and dy is  increased 

about
d xy=e x1, y1−ex1, y −e x , y1= ∂

2 e
∂ x∂ y

=−2  x0x2 y0 y2=

=−2 x0−2 x1x2 y0−2 y1 y2.

For the step in y-direction the increment dy is increased about

d yy=e x , y2−2 e x , y1= ∂
2e
∂ y2=2  x0x2

2=2 x0−2 x1 x2
2

and dx is increased about ∂2e
∂ x ∂ y

.

These increments are independent of x and y.

3.2 Troubles with slightly curved lines
So far the algorithm seems to work out nicely. But it fails when the Bézier curve becomes 
nearly a straight line. What happens becomes clear if the entire curve is analyzed, not only 
the short part  the algorithm wants to plot.  The curve is a symmetric parabola. It  has a 
second part. For curves with large curvature the second half is far away, leaving a clear 
path the algorithm can follow. But on nearly straight lines this second half can fall within the 
current possible pixel! Then the algorithm is confused since it relies on a clear gradient of  
error values. 

This problem occurred before. On flat ellipses with a = 1 the algorithm stopped to early. But 
the  situation  was  lucky.  The  ellipses  were  always  placed  in  symmetric  orthogonal 
orientation. The algorithm failed only in one case which could be fixed by an extra loop.
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Figure  9 shows an ambiguous situation. No positive/negative gradient is visible to follow 
from point P0. Even if the algorithm could somehow detect a way of low error values the 
green pixel near P1 of value  –7 would be wrongly selected since it has its low absolute 
value from the wrong blue half of the curve not the wanted black one.

T  he al  gorithm fails if another part of the (invisible) function comes near the vicinity of the 
set pixel.

What to do? The problem only occurs on almost straight lines. The Bézier points are also 
highly asymmetric. There are a few possibilities. One solution is to check if the error value 
a few pixel from the starting point still is below (x-direction) or above (y-direction) zero. 
When the algorithm looks n pixels ahead along the x- or y-direction from P0 it has to check 

if n d xd xyn−1d yy /20 and n d yd xyn−1d xx /20. But this check 
has also to be done for P2 since the situation could be reversed and the end point P2 cause 
the confusion. Another possibility would be to increase the resolution of the pixel raster just 
to find the correct pixel path of the curve and set the appropriate pixel closest to it.

This solution is not really satisfying at all.  A few nearly diagonally straight lines still get 
additional pixels although the algorithm works. And also the question remains what to do if 
this algorithm fails due do this theoretical flaw? The simplest solution is to plot the curve in 
two or more straight lines instead. 

3.3 Program to plot simple Bézier curves
The program in  listing  7 accepts only  basic  Bézier  curves  without  sign change of  the 
gradient  (no horizontal  or  vertical  turns).  A change of  the sign would require additional 
computations in the pixel loop. This problem is solved later by subdivision.
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Figure 9: Algorithm in trouble: no path to follow
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void plotBasicQuadBezier(int x0, int y0, int x1, int y1, int x2, int y2)
{                            
  int sx = x0<x2 ? 1 : –1, sy = y0<y2 ? 1 : –1; /* step direction */
  double x = x0–2*x1+x2, y = y0–2*y1+y2, xy = 2*x*y*sx*sy;
  double cur = sx*sy*(x*(y2–y0)–y*(x2–x0))/2;     /* curvature */
                                /* compute error increments of P0 */
  double dx = (1–2*abs(x0–x1))*y*y+abs(y0–y1)*xy–2*cur*abs(y0–y2);
  double dy = (1–2*abs(y0–y1))*x*x+abs(x0–x1)*xy+2*cur*abs(x0–x2);
                                /* compute error increments of P2 */
  double ex = (1–2*abs(x2–x1))*y*y+abs(y2–y1)*xy+2*cur*abs(y0–y2);
  double ey = (1–2*abs(y2–y1))*x*x+abs(x2–x1)*xy–2*cur*abs(x0–x2);
     
                              /* sign of gradient must not change */
  assert((x0–x1)*(x2–x1) <= 0 && (y0–y1)*(y2–y1) <= 0); 
     
  if (cur==0) { plotLine(x0,y0,x2,y2); return; } /* straight line */
     

  x *= 2*x; y *= 2*y;
  if (cur < 0) {                             /* negated curvature */
    x = –x; dx = –dx; ex = –ex; xy = –xy;
    y = –y; dy = –dy; ey = –ey;
  }
  /* algorithm fails for almost straight line, check error values */
  if (dx >= –y || dy <= –x || ex <= –y || ey >= –x) {    
    x1 = (x0+4*x1+x2)/6; y1 = (y0+4*y1+y2)/6;    /* approximation */
    plotLine(x0,y0, x1,y1);           
    plotLine(x1,y1, x2,y2);
    return;
  }
  dx –= xy; ex = dx+dy; dy –= xy;              /* error of 1.step */
     

  for(;;) {                                         /* plot curve */
    setPixel(x0,y0);
    ey = 2*ex–dy;                /* save value for test of y step */
    if (2*ex >= dx) {                                   /* x step */
      if (x0 == x2) break;
      x0 += sx; dy –= xy; ex += dx += y; 
    }
    if (ey <= 0) {                                      /* y step */
      if (y0 == y2) break;
      y0 += sy; dx –= xy; ex += dy += x;
    }
  }
}

Listing 7: Program to plot a basic Bézier curve
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A few comments to listing 7:
A negative curvature negates the gradient of the error values. This leaves the possibility to 
either negate the other values too or use another pixel loop with interchanged condition 
(exy+dx<0 → x++).

The error increments are used to look three pixel in x and y-direction ahead and detect 
almost straight lines by an additional gradient change of the error values. This is done for 
both ends at which the increments of P2 are only needed for this check. The curve is drawn 
by two lines in this case.

There is no approximation done by the curve algorithm. The error value of the last pixel will 
always be exactly zero. That's why the break condition of the loop is secure to test just for 
the last pixel. But during testing it is helpful to add an additional loop counter in the  for 
statement if something goes wrong. 

Since each step also modifies the increment value it had to be saved for the second test. 
Otherwise a few pixel would shift one y-step. This would normally not be noticed except if 
this was the last pixel for the test of the break condition.

3.4 High resolution raster
The previous algorithm approximates the Bézier curve with two lines if another part of the 
curve is too close to the set pixel. The plotted Bézier curve does not look smooth in such a 
case. 
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Figure 10: Higher resolution by sub-pixel raster
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Another alternative is to use a finer raster of sub-pixel and set the pixel closest to this pixel 
curve. This high resolution raster must be sufficiently fine to avoid a conflict of two curves 
on one pixel or very close pixel. 

Figure  10 shows a Bézier  curve with a sub-pixel raster of double precision. Each pixel 
(light-green) is divided in sub-pixel (green). 

The algorithm itself works on the finer pixel raster and has therefore no problem finding a 
path of suitable error values. Every time a sub-pixel is complete the pixel itself is set.

The concept  of  sub-pixeling  is  also  used by  the algorithm of  [Emeliyanenko,  2007]  to 
exactly draw implicit curves. This concept offers a solution if the algorithm of this document 
fails or gets too complicated for an implementation.

The  version  in  listing  8 requires  more  computations  in  the  pixel  loop  than  the  basic 
algorithm and is therefore a bit slower but never approximates the quadratic Bézier curve.

The calculation of the resolution factor makes sure that the sign of the error value does not 
change due to a close curve three sub-pixel from P0 or P2 in x or y direction. But this solu-
tion ends in a division-by-zero in case of a maximum which has to be given special care.

Since  the error  calculation  is  one  pixel  ahead,  the  computation  of  the  last  step  goes 
beyond the end pixel. The basic algorithm has no problem stopping in this case although 
the increment values may already be invalid since the curve could make a sharp turn.  But 
the fine algorithm finishes all  sub-pixels of a pixel.  But in case of a turn the sub-pixels 
cannot be finished since the increment values already changed the sign. For this case an 
extra break condition must be inserted in the inner loop to avoid an infinite loop.

This  resolution  factor  can get  quite large for  certain  Béziers.  But  only  a few eccentric 
curves slow the algorithm down.

The benefit of this algorithm is that the plotted curve has no approximation errors. All set 
pixels are as close as possible to the analog Bézier curve.

An option is to use the fine algorithm only if the basic version fails (f >1). A long curve 
could also be subdivided into a long nearly straight part plotted by the faster basic version 
and a shorter curved part by the fine algorithm.
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void plotFineQuadBezier(int x0, int y0, int x1, int y1, int x2, int y2)
{                            
  int sx = x0<x2 ? 1 : –1, sy = y0<y2 ? 1 : –1;    /* step direction */
  long f = 1, fx = x0–2*x1+x2, fy = y0–2*y1+y2;
  long long x = 2*fx*fx, y = 2*fy*fy, xy = 2*fx*fy*sx*sy;
  long long cur = sx*sy*(fx*(y2–y0)–fy*(x2–x0));        /* curvature */
                                   /* compute error increments of P0 */
  long long dx = abs(y0–y1)*xy–abs(x0–x1)*y–cur*abs(y0–y2);
  long long dy = abs(x0–x1)*xy–abs(y0–y1)*x+cur*abs(x0–x2);
                                   /* compute error increments of P2 */
  long long ex = abs(y2–y1)*xy–abs(x2–x1)*y+cur*abs(y0–y2);
  long long ey = abs(x2–x1)*xy–abs(y2–y1)*x–cur*abs(x0–x2);
     
                                 /* sign of gradient must not change */
  assert((x0–x1)*(x2–x1) <= 0 && (y0–y1)*(y2–y1) <= 0); 

  if (cur == 0) { plotLine(x0,y0, x2,y2); return; } /* straight line */

                       /* compute required minimum resolution factor */
  if (dx == 0 || dy == 0 || ex == 0 || ey == 0) 
    f = abs(xy/cur)/2+1;          /* division by zero: use curvature */
  else {
    fx = 2*y/dx; if (fx > f) f = fx;          /* increase resolution */
    fx = 2*x/dy; if (fx > f) f = fx; 
    fx = 2*y/ex; if (fx > f) f = fx; 
    fx = 2*x/ey; if (fx > f) f = fx; 
  }                                            /* negated curvature? */
  if (cur < 0) { x = –x; y = –y; dx = –dx; dy = –dy; xy = –xy; }
  dx = f*dx+y/2–xy; dy = f*dy+x/2–xy; ex = dx+dy+xy; /* error 1.step */

  for (fx = fy = f; ; ) {                              /* plot curve */
    setPixel(x0,y0);
    if (x0 == x2 && y0 == y2) break;
    do {                                         /* move f sub-pixel */
      ey = 2*ex–dy;                 /* save value for test of y step */
      if (2*ex >= dx) { fx––; dy –= xy; ex += dx += y; }   /* x step */
      if (ey <= 0) { fy––; dx –= xy; ex += dy += x; }      /* y step */
    } while (fx > 0 && fy > 0);                   /* pixel complete? */
    if (2*fx <= f) { x0 += sx; fx += f; }  /* sufficient sub-steps.. */
    if (2*fy <= f) { y0 += sy; fy += f; }         /* .. for a pixel? */
  }
}

Listing 8: Plotting a Bézier curve on a fine grid

3.5 Smart curve plotting
When does the basic algorithm fail and needs special attention? Considering the entire 
curve the Bézier is a parabola. The algorithm fails when the two symmetric parts of the 
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curve come too close together inside one pixel.  But from this point to the vertex of the 
Bézier the curve becomes a straight line since the other part starts from the same pixel. 
The problem is similar to the ellipse algorithm. When it fails only a line is left to plot.

The algorithm could be simplified under two conditions: the drawing begins with the longer 
part of the curve where they are still clearly apart and secondly the remaining part is a 
simple line when the algorithm fails. The problem does not occur when the vertex of the 
parabola is drawn since the curve must be subdivided in that case.

The algorithm begins at the end which is farther away from the vertex since the other part 
of the curve is then probably far enough away. The algorithm stops if the two symmetric 
parts of the parabola come too close together and the algorithm fails. This could be tested 
if  the derivative of  the gradient  of  the error  value changes its sign.  The curve is  then 
finished by plotting a straight line to the end of the curve.

void plotQuadBezierSeg(int x0, int y0, int x1, int y1, int x2, int y2)
{                             /* plot a limited quadratic Bezier segment */
  int sx = x2–x1, sy = y2–y1;
  long xx = x0–x1, yy = y0–y1, xy;         /* relative values for checks */
  double dx, dy, err, cur = xx*sy–yy*sx;                    /* curvature */

  assert(xx*sx <= 0 && yy*sy <= 0);  /* sign of gradient must not change */

  if (sx*(long)sx+sy*(long)sy > xx*xx+yy*yy) { /* begin with longer part */ 
    x2 = x0; x0 = sx+x1; y2 = y0; y0 = sy+y1; cur = –cur;  /* swap P0 P2 */
  }  
  if (cur != 0) {                                    /* no straight line */
    xx += sx; xx *= sx = x0 < x2 ? 1 : –1;           /* x step direction */
    yy += sy; yy *= sy = y0 < y2 ? 1 : –1;           /* y step direction */
    xy = 2*xx*yy; xx *= xx; yy *= yy;          /* differences 2nd degree */
    if (cur*sx*sy < 0) {                           /* negated curvature? */
      xx = –xx; yy = –yy; xy = –xy; cur = –cur;
    }
    dx = 4.0*sy*cur*(x1–x0)+xx–xy;             /* differences 1st degree */
    dy = 4.0*sx*cur*(y0–y1)+yy–xy;
    xx += xx; yy += yy; err = dx+dy+xy;                /* error 1st step */ 
    do {                              
      setPixel(x0,y0);                                     /* plot curve */
      if (x0 == x2 && y0 == y2) return;  /* last pixel -> curve finished */
      y1 = 2*err < dx;                  /* save value for test of y step */
      if (2*err > dy) { x0 += sx; dx –= xy; err += dy += yy; } /* x step */
      if (    y1    ) { y0 += sy; dy –= xy; err += dx += xx; } /* y step */
    } while (dy < 0 && dx > 0);   /* gradient negates -> algorithm fails */
  }
  plotLine(x0,y0, x2,y2);                  /* plot remaining part to end */
}

Listing 9: Fast Bézier curve algorithm
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The problem does not occur when the Bézier curve consists of both parts of the parabola. 
If the curvature of the vertex shrinks to a single point then the curve must be subdivided 
before since the gradient also changes the direction there. If it is not a single point then the 
two sides are far enough apart and the algorithm does not fail.

This  solution  is  very  efficient  to  plot  a  quadratic  Bézier  curve.  The algorithm has  the 
advantage that if the curve comes too close together to work it is straight enough to be 
finished by a line so it never fails.

Since the error values can get quite large (up to the fourth power) the double type is used 
instead of  a  long  integer.  If  a  64-bit  integer  type  is  available  this  type  could  be used 
instead.

3.6 Common Bézier curves
The previous Bézier algorithms rely on a continuously positive or negative gradient to keep 
it simple. A sign change would imply a change in the direction of the set pixel inside the 
loop. The error calculation is one pixel ahead and would need a change too. The Bézier 
curve is subdivided at the horizontal and vertical turns to avoid these troubles.

Subdividing the Bézier curve also has the additional benefit of avoiding unfavorable turns.

  

Figure 11: unfavorable curve turn

The left of figure  11 shows a curve turn with an  isolated pixel which just seems at the 
wrong place. From the point of view of the algorithm it is right since it  is closest to the 
curve. To avoid an unfavorable situation the turn of the curve is snapped to the center, a 
pixel shown in the right of figure 11 as dashed line. Of course this changes the entire curve 
slightly but looks much better.

The algorithm must sub-divide the Bézier curve at points at which the gradient changes its 
sign. These are vertical and horizontal turning points of the curve.
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Even if it is hard to believe, one quadratic Bézier curve could have two gradient changes 
and must be subdivided in up to three parts to make it plotable by the previous program. 
Such a more complex curve is visible in figure 12. The given points P0, P1 and P2 of the 
curve had to be split up at the vertical point P4 and at the horizontal point P6 into the shorter 
Bézier curve P0/P3/P4, curve P4/P5/P6 and curve P6/P7/P2. 

Setting the gradient equation of the implicit Bézier equation to zero gets the point of the 
gradient change: t (P0 – 2P1 + P2) – P0 + P1 = 0. Only values of 0 ≤ t ≤ 1 indicate a change of 

the gradient sign. The Point P5 is computed by t x=
x0− x1

x0−2 x1x 2
, t y=

y0− y1

y0−2y1 y2
and

x5=
x0 x2−x1

2

x0−2 x1x2
, y5=

y0 y2− y1
2

y0−2 y1 y y
. P4 and P6 are computed the same way:

x6=1−t y 
2 x021−t yt y x1t y x2 , y4=1−t x

2 y021−t x t x y1t x y2.

P3 and P7 could be computed by line intersection: y3= y0−
x0− x5

x0− x1
 y0− y1 ,

x7= x2−
y2− y5

y2− y1
 x2−x1.

3.7 Program to plot any Bézier curve
The program subdivides the curve at horizontal and vertical gradient changes and deleg-
ates the plotting to the sub-procedure.
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It first checks if a horizontal cut (dx  = 0) at P4 is necessary and if a vertical cut (dy  = 0) 
occurs too. If both cuts occur it makes sure the horizontal split comes first by conditionally 
swapping the points. Then it plots the part and cuts it off. The same is done for the vertical 
cut.

It  is  interesting  to  note  that  the  integer  division  of  negative  numbers  (and reminders) 
depend on the application, platform or programing language. The mathematical definition 
(in Ruby or Python) rounds towards the lower integer value (in which the remainder always 
remains positive): (–5)/3 = –2 whereas the technical definition (in C/C++ or Java) rounds 
towards zero: (–5)/3 = –1. Please be aware that your target system may handle it differ-
ently than the example program.

void plotQuadBezier(int x0, int y0, int x1, int y1, int x2, int y2)
{                                  /* plot any quadratic Bezier curve */
   int x = x0–x1, y = y0–y1;
   double t = x0–2*x1+x2, r;

   if ((long)x*(x2–x1) > 0) {                /* horizontal cut at P4? */
      if ((long)y*(y2–y1) > 0)             /* vertical cut at P6 too? */
         if (fabs((y0–2*y1+y2)/t*x) > abs(y)) {       /* which first? */
            x0 = x2; x2 = x+x1; y0 = y2; y2 = y+y1;    /* swap points */
         }                    /* now horizontal cut at P4 comes first */
      t = (x0–x1)/t;
      r = (1–t)*((1–t)*y0+2.0*t*y1)+t*t*y2;               /* By(t=P4) */
      t = (x0*x2–x1*x1)*t/(x0–x1);               /* gradient dP4/dx=0 */
      x = floor(t+0.5); y = floor(r+0.5);
      r = (y1–y0)*(t–x0)/(x1–x0)+y0;          /* intersect P3 | P0 P1 */
      plotQuadBezierSeg(x0,y0, x,floor(r+0.5), x,y);
      r = (y1–y2)*(t–x2)/(x1–x2)+y2;          /* intersect P4 | P1 P2 */
      x0 = x1 = x; y0 = y; y1 = floor(r+0.5);     /* P0 = P4, P1 = P8 */
   } 
   if ((long)(y0–y1)*(y2–y1) > 0) {            /* vertical cut at P6? */
      t = y0–2*y1+y2; t = (y0–y1)/t; 
      r = (1–t)*((1–t)*x0+2.0*t*x1)+t*t*x2;               /* Bx(t=P6) */
      t = (y0*y2–y1*y1)*t/(y0–y1);               /* gradient dP6/dy=0 */
      x = floor(r+0.5); y = floor(t+0.5);
      r = (x1–x0)*(t–y0)/(y1–y0)+x0;          /* intersect P6 | P0 P1 */
      plotQuadBezierSeg(x0,y0, floor(r+0.5),y, x,y);
      r = (x1–x2)*(t–y2)/(y1–y2)+x2;          /* intersect P7 | P1 P2 */
      x0 = x; x1 = floor(r+0.5); y0 = y1 = y;     /* P0 = P6, P1 = P7 */
   } 
   plotQuadBezierSeg(x0,y0, x1,y1, x2,y2);          /* remaining part */
}

Listing 10: Subdividing complex quadratic Bézier curve 

Rounding in C is a bit tricky especially if it should also work for negative numbers. Floating 
point  arithmetic  is  therefore  only  used  for  proper  rounding  of  the  divisions.  It  is  also 
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possible to do it in integers only but it is more complicated:  
round(a/b) = (a+sign(a)*abs(b)/2)/b. 

Sub dividing a Bézier curve always leads to certain integer rounding errors of the Bézier 
points. This becomes especially visible if two of the points of a Bézier come close together 
(about < 10 pixel). Sometimes one of the curves even becomes a straight line and does 
not seem to fit to the others. On the other hand this also has the benefit that horizontal  
and/or vertical intervals of the curve are always rasterized on full pixel. Curved transitions 
look much better that way.

The middle control point P1 could be changed to a thru point P̊1 by P1=2 P̊1−
P0P2

2
. (10)
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4 Rational Béziers
For rational Béziers each point  Pi of  equation (4) gets an additional weight  wi:  [Marsh, 
2005, p. 175]

Bn t =
∑

i ni 1−t n−i t i wi Pi

∑
i ni 1−t n−i t i w i

.  [ 0 ≤ t ≤ 1 ] (11) 

4.1 Quadratic rational Béziers
For n = 2 of equation (11) the rational quadratic Bézier becomes  

B2t =
1−t 2 w0 P021−t t w1 P1t2 w2 P2

1−t 2 w021−t t w1t 2 w2

(12)

The same matrix equation (7) for non-rational Béziers is used to compute the implicit quad-
ratic rational Bézier  equation except  that the equation (6) for  t  =  ½ must  consider the 
weights:

a w0 x02w1 x1w2 x2
22b w0 x02 w1 x1w2 x2w0 y02 w1 y1w2 y2

cw0 y02w1 y1w 2 y 2
22d w02w1w2w0 x02w 1 x1w2 x2

2e w02 w1w2w0 y02w1 y1w2 y2=−w02w1w 2
2

Solving the matrix  equation the implicit  equation  of  the rational  quadratic  Bézier  curve 
makes then:

x2 w 0 w2  y0−y2
24 w1

2 y0 y2−2 x y w0 w2 x0−x2 y0−y22w1
2 x0 y2x 2 y0

y 2w0 w2 x0−x2
24w1

2 x0 x2 2w0 w2  x  y0−y2− y  x0−x2 x0 y2−x 2 y0
w0 w2 x0 y2−x2 y0

2=0.

This equation suggests the substitution of w2=
w1

2

w0 w2
for simplification, expressing all 

weights only by one value.

The implicit equation of the rational quadratic Bézier becomes then: (13) 

x2 y0− y2
24w2 y0 y2−2 x y  x0−x2 y0−y22 w2 x0 y2x2 y0

y2  x0−x 2
24w2 x0 x22  x  y0− y2− y  x0−x2 x0 y2−x2 y0 x0 y2−x 2 y0

2=0.

The individual weights at the end points P0 and P2 of the rational quadratic Bézier change 
the curve the same way as the weight of the middle point P1. The weights could therefore 
be normalized without changing the curve by substitution of the weight of the middle point 

P1 by w=w1/√w0 w2 . The weights of the two end points become then one and could be 

ignored.
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For w =1 the curve is a parabola, for w < 1 the curve is an ellipse, for w = 0 the curve is a 
straight line and for w >1 the curve is a hyperbola. The weights are normally assumed to be 
all positive.

The quadratic Bézier  curve must again be subdivided at horizontal  and vertical  turning 
points.  These four points are calculated by setting the first  derivative of the parameter 
equation (12) to zero:

t=
2 w (P0−P1)−P0+ P2±√ 4w2(P0−P1)(P2−P1)+ (P0−P2)

2

2(w−1)(P0−P2)
. (14)

The  de Casteljau algorithm could be extended for rational Béziers by converting the 2D 
vector [xi, yi] plus weight wi of the rational curve to a 3D vector of the non-rational curve
 [wi  xi,  wi  yi,  wi]. After the subdivision the 3D vector  [xi,  yi,  wi]  is mapped back to 2D [xi/wi, 
yi/wi] plus weight  wi. When the curve in figure 13 is subdivided at the position of the para-
meter t then the additional points became:

Pa=
t (w P1−P0)+ P0

t (w−1)+ 1
, wa=

t(w−1)+ 1
√2 t(1−t)(w−1)+ 1

,

Pb=
t2(P0−2w P1+ P2)+ 2 t (w P1−P0)+ P0

2 t (1−t)(w−1)+ 1
,

Pc=
(1−t)(w P1−P2)+ P2

(1−t )(w−1)+ 1
, w c=

(1−t)(w−1)+ 1
√2t (1− t)(w−1)+ 1

[0 ≤ t ≤ 1] (15)

This time the subdivision algorithm is presented first and the drawing algorithm later. The 
subdivision algorithm is the same than listing 10 except that it considers the weight for the 
calculations. The weight mostly appears squared in rational equations. To make calcula-
tions easier the weight parameter in the segment drawing algorithm is defines as squared.
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void plotQuadRationalBezier(int x0, int y0, int x1, int y1,
                            int x2, int y2, float w)
{                         /* plot any quadratic rational Bezier curve */
   int x = x0–2*x1+x2, y = y0–2*y1+y2;
   double xx = x0–x1, yy = y0–y1, ww, t, q;
   assert(w >= 0.0);
  
   if (xx*(x2–x1) > 0) {                     /* horizontal cut at P4? */
      if (yy*(y2–y1) > 0)                  /* vertical cut at P6 too? */
         if (fabs(xx*y) > fabs(yy*x)) {               /* which first? */
            x0 = x2; x2 = xx+x1; y0 = y2; y2 = yy+y1;  /* swap points */
         }                    /* now horizontal cut at P4 comes first */
      if (x0 == x2 || w == 1.0) t = (x0–x1)/(double)x; 
      else {                         /* non-rational or rational case */
         q = sqrt(4.0*w*w*(x0–x1)*(x2–x1)+(x2–x0)*(long)(x2–x0));
         if (x1 < x0) q = –q;                     
         t = (2.0*w*(x0–x1)–x0+x2+q)/(2.0*(1.0–w)*(x2–x0));/* t at P4 */
      } 
      q = 1.0/(2.0*t*(1.0–t)*(w–1.0)+1.0);         /* sub-divide at t */
      xx = (t*t*(x0–2.0*w*x1+x2)+2.0*t*(w*x1–x0)+x0)*q;       /* = P4 */
      yy = (t*t*(y0–2.0*w*y1+y2)+2.0*t*(w*y1–y0)+y0)*q;
      ww = t*(w–1.0)+1.0; ww *= ww*q;            /* squared weight P3 */
      w = ((1.0–t)*(w–1.0)+1.0)*sqrt(q);                 /* weight P8 */
      x = floor(xx+0.5); y = floor(yy+0.5);                     /* P4 */
      yy = (xx–x0)*(y1–y0)/(x1–x0)+y0;        /* intersect P3 | P0 P1 */
      plotQuadRationalBezierSeg(x0,y0, x,floor(yy+0.5), x,y, ww);
      yy = (xx–x2)*(y1–y2)/(x1–x2)+y2;        /* intersect P4 | P1 P2 */
      y1 = floor(yy+0.5); x0 = x1 = x; y0 = y;    /* P0 = P4, P1 = P8 */
   }  
   if ((y0–y1)*(long)(y2–y1) > 0) {            /* vertical cut at P6? */
      if (y0 == y2 || w == 1.0) t = (y0–y1)/(y0–2.0*y1+y2);
      else {                         /* non-rational or rational case */
         q = sqrt(4.0*w*w*(y0–y1)*(y2–y1)+(y2–y0)*(long)(y2–y0));
         if (y1 < y0) q = –q;                   
         t = (2.0*w*(y0–y1)–y0+y2+q)/(2.0*(1.0–w)*(y2–y0));/* t at P6 */
      } 
      q = 1.0/(2.0*t*(1.0–t)*(w–1.0)+1.0);         /* sub-divide at t */
      xx = (t*t*(x0–2.0*w*x1+x2)+2.0*t*(w*x1–x0)+x0)*q;       /* = P6 */
      yy = (t*t*(y0–2.0*w*y1+y2)+2.0*t*(w*y1–y0)+y0)*q;
      ww = t*(w–1.0)+1.0; ww *= ww*q;            /* squared weight P5 */
      w = ((1.0–t)*(w–1.0)+1.0)*sqrt(q);                 /* weight P7 */
      x = floor(xx+0.5); y = floor(yy+0.5);                     /* P6 */
      xx = (x1–x0)*(yy–y0)/(y1–y0)+x0;        /* intersect P6 | P0 P1 */
      plotQuadRationalBezierSeg(x0,y0, floor(xx+0.5),y, x,y, ww);
      xx = (x1–x2)*(yy–y2)/(y1–y2)+x2;        /* intersect P7 | P1 P2 */
      x1 = floor(xx+0.5); x0 = x; y0 = y1 = y;    /* P0 = P6, P1 = P7 */
   } 
   plotQuadRationalBezierSeg(x0,y0, x1,y1, x2,y2, w*w);  /* remaining */
}

Listing 11: Subdividing a quadratic rational Bézier curve
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The program of listing 11 subdivides a quadratic rational Bézier curve at the horizontal and 
vertical  turning  points  the  same  way  as  listing  10 does  for  non-rational  Béziers.  The 
remarks in listing 11 refer therefore to figure 12. 

This implementation also plots non-rational Béziers.

The values of the error calculation make:

d x=e  x01, y0=4 w2 y0 x2 y0−x0 y2− y2− y2−y0
2 , (16)

d y=e x0 , y01=4 w2 x0 x0 y2−x2 y0−x2− x2−x0
2 ,

d xx=
∂2 e
∂ x2=−24w2 y0 y2 y2−y0

2 , d yy=
∂2e
∂ y2=−24w2 x0 x 2 x2−x0

2 ,

d xy=
∂2 e
∂ x∂ y

=22w2 x0 y2x2 y0 x2−x0 y2−y0.

For w = 1 these values equal the equations of chapter 3.1.

4.2 Rational quadratic algorithm
Very small values of the weight may cause the algorithm to fail. The reason is the same 
than before. The other part of the ellipse comes too close. Although this is a rare case an 
easy fix is simply to subdivide the curve in half and plot each segment separately.
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Figure 14: Error values of a quadratic rational Bézier
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void plotQuadRationalBezierSeg(int x0, int y0, int x1, int y1,
                               int x2, int y2, float w)
{                   /* plot a limited rational Bezier segment, squared weight */
  int sx = x2–x1, sy = y2–y1;                   /* relative values for checks */
  double dx = x0–x2, dy = y0–y2, xx = x0–x1, yy = y0–y1; 
  double xy = xx*sy+yy*sx, cur = xx*sy–yy*sx, err;               /* curvature */

  assert(xx*sx <= 0.0 && yy*sy <= 0.0);   /* sign of gradient must not change */
                                          
  if (cur != 0.0 && w > 0.0) {                            /* no straight line */
    if (sx*(long)sx+sy*(long)sy > xx*xx+yy*yy) {    /* begin with longer part */ 
      x2 = x0; x0 –= dx; y2 = y0; y0 –= dy; cur = –cur;         /* swap P0 P2 */
    }  
    xx = 2.0*(4.0*w*sx*xx+dx*dx);                   /* differences 2nd degree */
    yy = 2.0*(4.0*w*sy*yy+dy*dy);
    sx = x0 < x2 ? 1 : –1;                                /* x step direction */
    sy = y0 < y2 ? 1 : –1;                                /* y step direction */
    xy = –2.0*sx*sy*(2.0*w*xy+dx*dy);

    if (cur*sx*sy < 0.0) {                              /* negated curvature? */
      xx = –xx; yy = –yy; xy = –xy; cur = –cur;
    }
    dx = 4.0*w*(x1–x0)*sy*cur+xx/2.0+xy;            /* differences 1st degree */
    dy = 4.0*w*(y0–y1)*sx*cur+yy/2.0+xy;

    if (w < 0.5 && (dy > xy || dx < xy)) {   /* flat ellipse, algorithm fails */
       cur = (w+1.0)/2.0; w = sqrt(w); xy = 1.0/(w+1.0);
       sx = floor((x0+2.0*w*x1+x2)*xy/2.0+0.5);    /* subdivide curve in half */
       sy = floor((y0+2.0*w*y1+y2)*xy/2.0+0.5);
       dx = floor((w*x1+x0)*xy+0.5); dy = floor((y1*w+y0)*xy+0.5);
       plotQuadRationalBezierSeg(x0,y0, dx,dy, sx,sy, cur);/* plot separately */
       dx = floor((w*x1+x2)*xy+0.5); dy = floor((y1*w+y2)*xy+0.5);
       plotQuadRationalBezierSeg(sx,sy, dx,dy, x2,y2, cur);
       return;
    }
    err = dx+dy–xy;                                           /* error 1.step */
    do {                              
      setPixel(x0,y0);                                          /* plot curve */
      if (x0 == x2 && y0 == y2) return;       /* last pixel -> curve finished */
      x1 = 2*err > dy; y1 = 2*(err+yy) < –dy;/* save value for test of x step */
      if (2*err < dx || y1) { y0 += sy; dy += xy; err += dx += xx; }/* y step */
      if (2*err > dx || x1) { x0 += sx; dx += xy; err += dy += yy; }/* x step */
    } while (dy <= xy && dx >= xy);    /* gradient negates -> algorithm fails */
  }
  plotLine(x0,y0, x2,y2);                     /* plot remaining needle to end */
}

Listing 12: Plot a limited rational Bezier segment

This algorithm also avoids setting spurious pixel. The pixel loop of listing 12 therefore looks 
if no second x or y step happens and takes the appropriate step beforehand. Such a check 
could be included in every pixel loop.
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4.3 Rotating the ellipse
Now the tools for solving the problem of the rotated ellipse are developed.

When the ellipse is transformed by the rotation matrix R =[cos −sin
sin cos ] the implicit 

equation becomes:  

x2a2sin2b2 cos2−2 x y a2−b2 sincos y2 a2cos2b2 sin2−a2b2=0.
With the definitions of xd

2=a2 cos2b2sin2 , yd
2=a2sin 2b2 cos2  and  

zd=a
2−b2sin cos=a2−b2 tan

1tan2
=a2 e2

2
sin 2  (e ..  eccentricity)  the  implicit 

equation of the ellipse rotated by the angle θ becomes:

x2 yd
2−2 x y zd+ y2 xd

2−xd
2 yd

2+ zd
2=0 [|zd| ≤  xd yd] (17)

xd and yd are the size of new rectangle enclosing the rotated ellipse. If |zd| equals xd yd then 
the ellipse becomes a straight diagonal line.

Figure 15: Rotated ellipse

The values of the maximums (contact points to the rectangle) make  xe yd = xd ye = zd.

Useful relations: 2 a2=xd
2+ yd

2+ √( xd
2− yd

2 )2+ 4 zd
2 , 2b2=xd

2+ yd
2−√( xd

2− yd
2 )2+ 4 zd

2 .

The algorithm is divided into two parts. The first part calculates  xd, yd, zd  and calls the 
second part  by the parameters of corners of  the rectangle.  This proceeding snaps the 
curve of  the  ellipse  to  integer  values  and  makes  it  again  possible  of  drawing  rotated 
ellipses of odd diameters or without calculating trigonometric functions.
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4.4 Rational Bézier ellipses
The algorithm faces the same problem as quadratic Bézier curves. If the second half of the 
flat ellipse comes too close the algorithm fails. The smart solution of the previous imple-
mentation could not be used this time since the ellipse is a closed curve. The problems 
arise on the two ends of the flat ellipse. To use the same solution the algorithm would have 
to start at the middle and plot towards its narrow ends. This would become a complex 
program. Another approach developed earlier is to increase the resolution of the raster by 
a finer grid. This high resolution raster must be sufficiently fine to avoid a conflict of two 
curves on one pixel or very close pixel. 

Another solution to this problem is to use the already existing rational Bézier algorithm. An 
ellipse can also be regarded as a composition of four rational Bézier curves. By comparing 
the terms of the two implicit  equations of ellipse and rational Bézier the weight of P1 is 

calculated by w2=
xd yd± zd

2 xd yd
for the long/short side of the elliptic segment.

The program for drawing rotated ellipses can now delegate the drawing process to the 
subroutine.

void plotRotatedEllipse(int x, int y, int a, int b, float angle)
{                            /* plot ellipse rotated by angle (radian) */
   float xd = (long)a*a, yd = (long)b*b;
   float s = sin(angle), zd = (xd–yd)*s;           /* ellipse rotation */
   xd = sqrt(xd–zd*s), yd = sqrt(yd+zd*s);    /* surrounding rectangle */
   a = xd+0.5; b = yd+0.5; zd = zd*a*b/(xd*yd);    /* scale to integer */
   plotRotatedEllipseRect(x–a,y–b, x+a,y+b, (long)(4*zd*cos(angle)));
}

void plotRotatedEllipseRect(int x0, int y0, int x1, int y1, long zd)
{           /* rectangle enclosing the ellipse, integer rotation angle */
   int xd = x1–x0, yd = y1–y0;
   float w = xd*(long)yd;
   if (zd == 0) return plotEllipseRect(x0,y0, x1,y1);   /* looks nicer */
   if (w != 0.0) w = (w–zd)/(w+w);             /* squared weight of P1 */
   assert(w <= 1.0 && w >= 0.0);         /* limit angle to |zd|<=xd*yd */
   xd = floor(xd*w+0.5); yd = floor(yd*w+0.5);    /* snap xe,ye to int */
   plotQuadRationalBezierSeg(x0,y0+yd, x0,y0, x0+xd,y0, 1.0–w);
   plotQuadRationalBezierSeg(x0,y0+yd, x0,y1, x1–xd,y1, w);
   plotQuadRationalBezierSeg(x1,y1–yd, x1,y1, x1–xd,y1, 1.0–w);
   plotQuadRationalBezierSeg(x1,y1–yd, x1,y0, x0+xd,y0, w);
}

Listing 13: Programs to plot rotated ellipses

The program in listing 13 even works if P0 and P1 are interchanged. 
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The only disadvantage of this solution is that the ellipse is not always exactly symmetric. 
Sometimes the curve is just between two pixels and the drawing algorithm always rounds 
to same direction (the lower pixel for example). In case of the ellipse this means that the 
one side of the segment is rounded inwards and the other symmetric side outwards.
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5 Cubic Bézier curves
Are you ready for the third degree? Rasterizing cubic curves needs a bit more mathem-
atics. Cubic Béziers can get quite complex as figure 16 shows. The loops and cusps cause 
many troubles. It may not be a bad decision to subdivide the cubic curve in short curves by 
de Casteljau's algorithm and convert them to quadratic Bézier curves which could be plot 
by the previous algorithm.

5.1 Cubic degree reduction
In normal cases it is not possible to exactly reduce the degree of a Bézier curve. Only if the 
cubic term vanishes equation (29) could be used to get a reduced quadratic equation.

It is however possible to approximate a cubic Bézier by quadratic Béziers. To keep the 
deviation small it is advisable to take the subdivision in three steps:

• the curve is subdivided at horizontal and vertical stationary points (chapter 5.9)
• the curve is subdivided at the inflection point (chapter 5.7)
• the remaining curve is subdivided in two quadratic Béziers 

Page 44 of 81

Figure 16: Various cubic Bézier curves

P0

P1 P2

P3 P0

P1P2

P3 P0

P1P2

P3



Rasterizing algorithm Alois Zingl

Figure 17: Approximation of a cubic Bézier (red) by two quadratic ones (green)

Of course there are a few possibilities for degree reduction and subdivision. An accurate 
one makes sure that the curvature at the end points of the approximation does not change 
which has also the benefit of easy calculations. 

The following considerations keep the deviations small.  The cubic Bézier P0-P1-P2-P3 in 
figure 17 is exactly halved (at t = ½) by DeCasteljou subdivision. The subdivision point Pc 

remains exactly at the cubic Bézier curve. Now the tangents at the end points P0 and P3 of 
the subdivided cubic and the two quadratic curves P0-Pa-Pc and Pc-Pb-P3 are made equal in 
direction and magnitude. 

If the cubic Bézier segment P0-Pa-Pc is obtained by the DeCasteljou subdivision the tangent 
at  P0 makes P'(0) = 3(P1-P0)/2 and the tangent  of  the quadratic  Bézier  P0-Pa-Pc makes 
2(Pa-P0). Making this two tangent equal the points became: 
Pa = (P0 + 3P1)/4, Pb = (3P2 + P4)/4 and Pc = (Pa+Pb)/2. (18)

If the approximation by quadratic Bézier curves is not accurate enough the cubic curve 
must be rasterized. 

5.2 Polynomial Resultants
Again the implicit equation of the cubic Bézier curve is needed: [Marsh, 2005]

B3(t)=(1−t)3 P0+ 3 (1−t)2 t P1+ 3(1−t) t 2 P2+ t 3 P3 .  (19)

For deriving the general implicit equation of third order of  

a x3−3b x2 y+ 3c x y2−d y3+ 3e x2−3 f x y+ 3 g y2+ 3h x−3i y+ j=0 (20)

ten linearly independent equations are needed. This seems far too complex so lets try a 
different approach. 
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Resultants are a powerful tool to calculate the common roots of two (or more) polynomials 
without the laborious work of finding all individual roots. The main idea is to find a set of 
linearly independent polynomials to apply the theory of linear system of equations. If fi and 

g j are all the roots of the two polynomials  f t=∑ a i t
i=0 and g t =∑ b i t

i=0 then the 

resultant is defined as the product of the differences of their roots R  f , g =∏  f i−g j

and could be calculated by the determinant of the Sylvester  or Bézout matrix.  [Bézout, 
1764]

Bézout first noticed that '… a determinate equation can always be viewed as the result of  
two equations in two unknowns, when one of the unknowns is eliminated'. (Leibniz already 
used resultants although he never published his findings.) The problem is also related to 
Euclid's GCD algorithm or Gauss elimination.

If  the  two  polynomials  f(t) and  g(t) have  a  common  root  t0 then  the  equation 
f(t) g(s) − f(s) g(t) = 0 will  always be satisfied for any value of  s.  The equation must also 
contain (s − t) as a factor since it will be satisfied by t = s too even if there is no common 
root. After dividing by (s − t) the equation could be seen as polynomial in s where the coeffi-
cient of each term is a polynomial in t. Since at the common root t = t0 the entire expression 
must vanish for any value of  s, each of the coefficient polynomials in  t must vanish at  t0. 
[Cayley, 1867]

The coefficient matrix for two univariate polynomials is calculated by the Cayley expression

=
f t g s −f  sg t 

s−t
=∑

j=0

n−1 ∑i=0

n−1

cij t
i s j=0  with (21)

c ij= ∑
k=max(0, i− j )

min (i ,n− j−1 )

(a i−k b j+ k+ 1−a j+ k+ 1 bi− k)=c ji .

This equation can also be written in matrix form

=[ 1
⋮

sn−1]
T

[ c00 ⋯ c0,n−1

⋮ ⋱ ⋮
cn−1,0 ⋯ cn−1, n−1

][ 1
⋮

tn−1]=0.

The square matrix of this equation is called Bézout matrix of the polynomials  polynomials 
f(t) and g(t). The determinant of this matrix only equals zero if a common root exists. Since 
the expression must vanish for any value of  s the resultant is created by the coefficient 
matrix of n homogeneous linear equations. 

A common root t = t0 only exists if [ c00 ⋯ c0,n−1

⋮ ⋱ ⋮
cn−1,0 ⋯ cn−1,n−1

][ 1
⋮

t n−1]=0 (22)
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It may be surprising to view this as linear equations but in this case the unknowns are 
simply powers of t and the resultant will be identically equal to zero if and only if the coeffi-
cient matrix of n homogeneous linear equations of the power of t are all zero.

The simplest example is of degree one: f t=a1 ta0=0, g t=b1tb0=0.
(a1 t+ a0)(b1 s+ b0)−(a1 s+ a0)(b1t+ b0)

s−t
=c00=a0b1−a1 b0=0.

The resultant of degree two is calculated by

f t =a2t 2a1ta0=0, gt =b2 t 2b1tb0=0.

(a2 t 2+ a1 t+ a0)(b2 s2+ b1 s+ b0)−(a2 s2+ a1 s+ a0)(b2 t 2+ b1 t+ b0)
s−t

=(c11 t+ c01)s+ (c01 t+ c00)=0.

Bézout's matrix makes then [c00 c01

c10 c11][1t ]=[a0 b1−a1 b0 a0 b2−a2 b0

a0b2−a2 b0 a1 b2−a2 b1][1t ]=0.

The resultant of two cubic polynomials is calculated by

f t=a3t 3a2 t 2a1 ta0=0, g t =b3t 3b2 t2b1 tb0=0.

f (t)g (s)−f (s )g (t)
s−t

=(c22 t 2+ c12 t+ c02)s
2+ (c12 t 2+ c11 t+ c10)s+ (c02 t 2+ c01 t+ c00)=0.

The resultant of Bézout's matrix is

[a0b1−a1b0 a0 b2−a2b0 a0b3−a3 b0

a0 b2−a2 b0 a1b2−a2 b1+ a0b3−a3 b0 a1b3−a3 b1

a0b3−a3 b0 a1 b3−a3b1 a2b3−a3 b2
][ 1tt2]=0.

5.3 Implicit cubic Bézier equation
Now resultants can also be applied to convert the parametric equations of a curve to the 

implicit form f(x,y)=0 for any value of t: R (f ,g)=∣ c00 ⋯ c0, n−1

⋮ ⋱ ⋮
cn−1,0 ⋯ cn−1,n−1

∣=0. (23)

The equation of the rational Bézier curve of degree n makes

 Bn( t)=
∑

i
w i(ni )(1−t )n−i ti P i

∑
i

w i(ni )(1−t)n−i ti
. (24)

The common root of the two parametric polynomials

f x t =∑
i

wini 1−t n−i ti x−x i=0 and f y t =∑
i

wini 1−t n−i t i y− y i=0

build the implicit equation of the Bézier curve f(x,y)=0 in x and y. 
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fx(t) is a polynomial in t whose coefficients are linear in x, and fy(t) a polynomial in t whose 
coefficients are linear in y. Any value of  x and y for which f(x,y)=0 makes the resultant of 
fx(t) and fy(t) to equal zero and are therefore part of the parametric curve.

The Bernstein form of the polynomial must be converted to the power form by 

∑
i

wini 1−t n−it i=∑
i ni ∑k w k ik−1i−kt i

The coefficients ai and bi of the polynomials f(t) and g(t) of the matrix (22) could be further 
simplified due to the linearity of determinants. Adding to each row and column  m of the 
determinant all previous rows and columns this sum becomes  

∑
i mi ∑k w k ik−1i−k x− xk =wmx−xm.

The polynomial matrix coefficients of the Bézier curve make then

a i=wini x−x i and bi=w ini y− y i .

The third degree of the cubic Bézier curve could now be implicitized as follows

            f (x , y )=∣d 01 d 02 d 03

d 02 d 03+ d 12 d 13

d 03 d 13 d 23
∣=0  where d ij=(3i )(3j)∣ x y 1

x i y i 1
x j y j 1∣ (25)

Unfortunately the terms of this implicit equation (20) are rather messy, for example  

a=9 y01  y03 y239 y12 y23−3 y13
2 −27 y02

2 y2318 y02 y03 y13− y03
2  y039 y12

where yij = yi – yj. Is there a more simple expression possible?

The key to success is symmetry. But the definition of the Bézier curves is asymmetric; the 
parameter t ranging from zero to one. 

This has to be changed to the symmetrically defined range of the parameter from minus 
one half to plus one half:

B3 t =½−t 
3 P03 ½−t 2½t P13½−t ½t 2 P2½t 

3 P3 for [−½≤t≤½] .

To make calculations easier the constants of the cubic Bézier equation are transformed by: 

[ x a

2 xb

4 xc

8 xd
]=[1 −3 3 −1

1 −1 −1 1
1 1 −1 −1
1 3 3 1 ][

x0

x1

x2

x3
] and [ ya

2 yb

4 yc

8 yd
]=[1 −3 3 −1

1 −1 −1 1
1 1 −1 −1
1 3 3 1 ][

y0

y1

y2

y3
]. (26)

The Bézier equations become:

x=−t 3 xa3 t 2 xb−3 t xcxd and y=−t 3 ya3 t 2 yb−3 t yc yd .

The reverse transformation makes:
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[x0

x1

x2

x3
]=[ 1 3 3 1
−1 −1 1 1
1 −1 −1 1
−1 3 −3 1][

xa /8
xb/4
xc /2
xd
] and [ y0

y1

y2

y3
]=[ 1 3 3 1
−1 −1 1 1
1 −1 −1 1
−1 3 −3 1][

ya/8
yb/ 4
yc/ 2
yd
]

The expressions became further simpler by introducing the constants

c ij=∣x i x j

y i y j∣= xi y j−x j yi . (27)

The terms of the implicit cubic Bézier equation (20) of f(x ,y)=0 are then computed by:

a= ya
3 , b=xa ya

2 , c=xa
2 ya , d=xa

3 , e=cad ya
2−3(2cab yc+ cac yb) ya+ 9cab yb

2 ,
f =(2cad+ 3cbc) xa ya+ 9(2cab xb yb+ xb xc ya

2−xa
2 yb y c) ,

g=cad xa
2−3(2cab xc+ cac xb) xa+ 9cab xb

2 ,
h=cad

2 ya+ 6 (3cabcbd−cac cad) yb+ 3(3cac
2 −4cab cad−9cab cbc) yc+ 9cab cac yd ,

i=cad
2 xa+ 6(3cab cbd−cac cad ) xb+ 3(3cac

2 −4 cab cad−9cab cbc)xc+ 9 cab cac xd

    

and j=cad
3 −9 cad cac cbd2cab ccd 27 cabcbd

2 cac
2 ccd −81cab cbc ccd . (28)

The last term  j is not needed for the algorithm. 

Most characteristic properties of the Bézier curve can only be defined by the values of cab, 
cac and cbc. Please note that cij changes the sign if  i and  j (or x and y) are interchanged.

If xa and ya equal zero then the cubic term of the Bézier equation vanishes and the curve 
becomes the reduced quadratic (or even less) form:  

B3t =1−t 2 P31−t t 3 P1−P0t 2 P0 (29)

(exact degree reduction).

5.4 Cubic error calculation
The equation of the error calculation for the cubic Bézier curve is  

e x , y =a x3−3b x2 y3c x y2−d y33e x2−3 f x y3 g y23h x−3 i y j

Fortunately this complex expression only needs to be evaluated for the initialization. During 
the pixel loop the calculations only need additions due to forward differencing.
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The increment steps in x-direction make: err += d x , d x += d xx , d y += d xy ,  

d xx += ∂
3e
∂ x3=6 a=6 ya

3 , d xy += ∂3e
∂ x2∂ y

=−6b=−6 xa ya
2 , d yy += ∂3e

∂ x∂ y2=6c=6 xa
2 ya .

And in in y-direction: err += d y , d y += d yy , d x +=d xy ,  

d yy += ∂
3 e
∂ y3=−6 d=−6 xa

3 , d xy += ∂3 e
∂ x ∂ y2=6c=6 xa

2 ya , d xx += ∂3 e
∂ x 2∂ y

=−6b=−6 xa y a
2.

Calculating the differences of the first and second order the forward differences follow a 
regular pattern. The differences of the error values are the finite n-th order forward differ-
ences in two dimensions:

d nx n y
=∑

ix=0

nx

∑
i y=0

n y

(−1)ix+ i y(nx

i x )(n y

i y )e (x+ nx−i x , y+ n y−i y )  [nx+ ny = n]. (30)

The initialization values of the increment variables for P0 make the finite first and second 
order forward differences: (31)

d x=e x01, y0=3a x0x01 y0 c y0− f −2 x01b y0−eha=
=27( ya+ 2 yb+ yc)(cab

2 + cab cac−3 cabcbc+ cac
2 )+ 27( yb

2− ya yc)cab−9 ya
2 (cab+ cac+ cbc)+ ya

3 ,

d y=e x0 , y01=−3d y0 y01x0b x0 f −2 y01c x0g i −d=
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Figure 18: Error values of a cubic Bézier curve
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=−27xa2 xbxc cab
2 cab cac−3cab cbccac

2 27 xb
2−xa xc cab−9 xa

2cabcaccbc− xa
3 ,

d xx=e x02, y0−2e x01, y0=6 a x01−b y0e=
=6 ya

3−3 y a
2cabcac −3 ya 2 cab yccac yb9cab yb

2 ,

d xy=e x01, y01−e x01, y0−e x0 , y01=−3b 2 x01−c 2 y01 f =
=3xa ya 6cabcac−3cbc xa− ya−9xb xc ya

2−xa
2 yb yc2cab xb yb ,

d yy=e x0 , y02−2 e x0 , y01=6 c x0−d  y01g =
=6xa

3−3 xa
2 cabcac−3 xa 2cab xccac xb9cab xb

2 .

These values do not depend on xd or  yd.  The error calculation could be done in integers. 
But the values can get quite large (up to the sixth power). Variables dxx, dxy, dyy need four 
times of the initial word size, dx and dy five times and the error value six times.

5.5 Self-intersection point
For the crunode or self-intersection point  we want  to find the two corresponding para-
meters t1 and t2 such that B3(t1) = B3(t2), t1 ≠ t2.

The problem of the self-intersection point could be solved by sub-dividing or root finding. 
But there is also an algebraic solution of this problem.

The self-intersection point is a saddle point where the derivative of the implicit equation of 
the curve equals zero in any direction. To calculate this point the derivative of the implicit 
equation is parameterized:

∇ xy=〈3a x2−6b x y3c y26e x−3 f y3h , −3b x26c x y−3 d y2−3 f x6 g y−3i 〉
(32)

This derivative is substituted by the parametric equation of
x=−t 3 xa3 t 2 xb−3 t xcxd and y=−t 3 ya3 t2 yb−3 t yc yd .

The two common roots of these two derivatives are the parameter t1 and t2 of the self inter-
section point. This seems to be a polynomial of sixth degree to solve but fortunately the 
two highest degrees vanish in this case.

The self intersection point of the cubic Bézier curve is calculated by the two common roots 
of the two polynomials:

t 4 xa cab
2 −t 3 cabxa cac2 xbcabt

2xa cac
2 −xa cab cbc3 xc cab

2 
t 6 xb cab cbc−3 xb cac

2 xa cac cbcxc cac
2 −3 cabcbc=0,

t 4 ya cab
2 −t 3 cab ya cac2 yb cabt

2 ya cac
2 − ya cab cbc3 yc cab

2 
t 6 yb cabcbc−3 yb cac

2  ya cac cbc yc cac
2 −3cab cbc=0.

Newton-Raphson iteration can be used to calculate the roots of polynomials. But to find the 
common roots of two polynomials the Bezout's resultant helps again to obtain an analytic 
solution. 

Page 51 of 81



Rasterizing algorithm Alois Zingl

Given two polynomials f t=∑ a i t
i , gt =∑ bi t

i the homogeneous linear equation of 

Bezout's resultant of the fourth degree makes:

[d 01 d 02 d 03 d 04

d 02 d 03+ d 12 d 04+ d 13 d 14

d 03 d 04+ d 13 d 14+ d 23 d 24

d 04 d 14 d 24 d 34
][ 1tt 2

t 3]=0 where d ij=a ib j−a jb i . (33)

The polynomials  f(t) and g(t)  have a common root if and only if the determinant of R(f,g) 
equals zero. These roots can be found by performing the Gaussian elimination on the rows 
of R(f,g). After elimination if the last non-zero row is (0, ..., 0, h0, h1, ..., hk), then the common 

roots of f(t),  g(t)  are simply the roots of the polynomial ht =∑ h i t
i . [Goldman et al., 

1985]

The matrix coefficients of Bezout's resultant of the cubic Bézier curve make:

d 01=2cbc(3cab cbc−cac
2 )2 , d 02=−cac(cabcbc−cac

2 )(3cab cbc−cac
2 ) ,  

d 03=−cab(2cabcbc+ cac
2 )(3cab cbc−cac

2 ) , d 04=cab
2 cac(3cab cbc−cac

2 ) ,

d 12=−3 cab(5cabcac
2 cbc−8cab

2 cbc
2 −cac

4 ) , d 13=cab
2 cac (4 cab cbc−3cac

2 ) ,  

d 14=−3 cab
3 (2cab cbc−cac

2 ) , d 23=cab
3 (8cab cbc+ cac

2 ) , d 24=−3cab
4 cac , d 34=2cab

5 .  

These values only depend on  cab,  cac and cbc.  The determinant of this resultant matrix is 
always zero.
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Figure 19: 3D surface plot of a cubic Bézier curve with self-intersection
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Eliminating one row and column of the matrix gets the quadratic equation to calculate the 
roots of the self-intersection point. Taking row 2 and 3 the parameter of the self-intersec-

tion point makes:   t 1,2=
cac±12 cab cbc−3 cac

2

2 cab
. (34)

Please note that  t 1 and t 2 also do not depend on xd, yd, which  are like the center of the 
Bézier curve.

For 4 cabcbccac
2 the  cubic  implicit  equation  has  a  complex  self-intersection  point 

(acnode).  If  4 cabcbc=cac
2  the  curve  has  a  cusp.  If ∣t 1,2∣½ then  the  cubic  Bézier 

segment  has  a  self-intersection  point  (crunode).  Otherwise  only  the  implicit  equation 
outside the parameter interval has a self-intersection.  

5.6 Gradient at P0

The gradient of the curve at P0 is either positive or negative in plot direction. Since the 
algorithm depends on a continuously positive (or negative) slope the values have to be 
negated in case of a negative gradient to be able to use the same algorithm. How to calcu-
late the gradient at P0?

The gradient is the cross product of the surface normal and the curve tangent vector.

The normal to the surface of the equation e(x,y) = z in figure (20) makes  

n⃗=[−∂e (x , y )
∂ x

,−∂e (x , y )
∂ y

,1].
With the definition of the grade g=27

4 ((cab+ cac)
2−cab(cac+ 3cbc))  the derivatives of the 

equation  make
∂e x0, y0
∂ x

=g  y0− y1 and  
∂e x0, y0
∂ y

=−g  x0−x1. The gradient  at 
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P0 makes then 

∇ e x0 , y0=n×[ x1−x0, y1− y0 ,0]=[ y0− y1 , x1− x0 , g x0− x1
2 y0− y1

2].
The z component (gz in figure 20) of the gradient (proportional to g) is only negative if P0 is 
part of the self intersection loop. If the grade g equals zero the point P0 itself is the crunode 
(or cusp).

This information can be used to take special care since drawing the self-intersection loop 
always includes the danger that another part of the curve comes too close for the algorithm 
to work correctly.

5.7 Inflection point
The position of the inflection points becomes important if the cubic Bézier is approximated 
by sets of connected quadratic Bézier segments. A cubic Bézier curve changes its bending 
direction at the inflection point. 

The inflection point is the point where the curvature of a curve equals zero. The curvature 

of a curve is calculated by κ=
1
r=

dφ
d s =

∣Ḃ(t)×B̈( t )∣
∣Ḃ(t )∣3

=
ḟ x (t) ¨f y (t)− ḟ y( t) f̈ x (t)

√( ḟ x
2(t )+ ˙f y

2(t))3
. (35)

In case of the cubic Bézier curve the inflection point could be determined by the quadratic 

equation of t 2cab−t caccbc=0. (36)

5.8 Cubic troubles
Again the algorithm runs into troubles for certain Bézier curves. Figure 21 shows a curve 
with ambitious error values at P0. The situation becomes clear if the entire curve is plotted. 
The point at P0 is near a self intersection point.

The algorithm has a real dilemma with flat self-intersection loops. It cannot plot from the 
intersection side since the error values change sign there. If the algorithm wants to plot 
from the flat tip side there is the danger that the other part of the curve is too close and the 
error values are too confusing. The algorithm fails if the curve contains a flat self-intersec-
tion loop.

Figure 21 shows a curve where the loop is very flat. In that case both ends could be acute 
angles and lead into narrow or same pixel. The algorithm can not plot a curve if both ends 
start with such confusing error values. Two possibilities could solve the problem. The first 
would be the same used for quadratic rational Béziers. The curve is additionally subdivided 
at the broadest position of the loop and the plot starts there. The curves get a bit edgy 
sometimes by this solution. The other one is to use a higher resolution raster for the plot. 
The resolution is selected by the length of the legs. This method slightly decreases the plot 
speed but leads to smoother curves.
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5.9 Cubic algorithm
The basic algorithm needs a continuously rising or falling curve. It is not even simple to 
include a check of the parameters to ensure this condition. The first is that the lines P1-P0 

and P3-P2 are both either rising or falling. But the slope of P2-P1 could be negated to the 
others and the curve could still be plot. So the second condition must be that either the line 
P3-P0 has the same slope than P2-P1 or the first derivative of the parametric equation has 
real roots.

The assert statement must also consider certain rounding errors. If  the parameter is of 
single floating point type with 23 bit mantissa and the parameter of the coordinates don't 
exceed 16 bit then epsilon must be greater than 216-23.

For simple (and faster) code the calculation of dx and dxx is one y-step ahead. The calcula-
tion of dy and dyy is one x-step ahead. The calculation of the error value is one x- and one y-
step ahead.

The cubic Bézier curve could have a cusp or self-intersection loop. Even if the loop is not 
directly  visible  with  the specific  parameter the entire curve could  have a loop and the 
visible segment be a part of it. This cusp or loop causes many troubles. The algorithm can 
not plot through the self-intersection. Therefore the plot starts from both ends. If the error 
values get confused because the gradient changes its sign then the other end is tried. 
Consequently the function is able to handle Bézier curves with self-intersection points.

Another problem arises if this loop is very flat like in figure 21. Then one end of the curve is 
prossibly blocked by the self-intersection point and on the other end has too confusing 
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Figure 21: Cubic Bézier with confusing error values
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error values for the algorithm. The resolution of the pixel is increased in that case. The 
algorithm uses the value of the grade to check if the resolution factor has to be increased.

The algorithm also looks one pixel ahead to detect a cusp of self-intersection (dx > 0 or dy < 
0). But at the start point these values could still be negated for one pixel ahead although 
they are not for the current. The algorithm must therefore check the values at the current 
pixel (dx > dxy or dy < dxy) and switch to the check of one pixel ahead only if the values there 
became valid. 

void plotCubicBezierSeg(int x0, int y0, float x1, float y1,
                        float x2, float y2, int x3, int y3) 
{                                      /* plot limited cubic Bezier segment */
   int f, fx, fy, leg = 1;
   int sx = x0 < x3 ? 1 : –1, sy = y0 < y3 ? 1 : –1;      /* step direction */
   float xc = –fabs(x0+x1–x2–x3), xa = xc–4*sx*(x1–x2), xb = sx*(x0–x1–x2+x3);
   float yc = –fabs(y0+y1–y2–y3), ya = yc–4*sy*(y1–y2), yb = sy*(y0–y1–y2+y3);
   double ab, ac, bc, cb, xx, xy, yy, dx, dy, ex, *pxy, EP = 0.01; 
      
                                               /* check for curve restrains */ 
   /* slope P0-P1 == P2-P3   and  (P0-P3 == P1-P2      or  no slope change) */
   assert((x1–x0)*(x2–x3) < EP && ((x3–x0)*(x1–x2) < EP || xb*xb < xa*xc+EP)); 
   assert((y1–y0)*(y2–y3) < EP && ((y3–y0)*(y1–y2) < EP || yb*yb < ya*yc+EP));

   if (xa == 0 && ya == 0) {                            /* quadratic Bezier */
      sx = floor((3*x1–x0+1)/2); sy = floor((3*y1–y0+1)/2); /* new midpoint */
      return plotQuadBezierSeg(x0,y0, sx,sy, x3,y3); 
   }
   x1 = (x1–x0)*(x1–x0)+(y1–y0)*(y1–y0);                    /* line lengths */
   x2 = (x2–x3)*(x2–x3)+(y2–y3)*(y2–y3);
   do {                                              /* loop over both ends */
      ab = xa*yb–xb*ya; ac = xa*yc–xc*ya; bc = xb*yc–xc*yb; 
      ex = ab*(ab+ac–3*bc)+ac*ac;     /* P0 part of self-intersection loop? */
      f = ex > 0 ? 1 : sqrt(1+1024/x1);             /* calculate resolution */
      ab *= f; ac *= f; bc *= f; ex *= f*f;          /* increase resolution */
      xy = 9*(ab+ac+bc)/8; cb = 8*(xa–ya);/* init differences of 1st degree */
      dx = 27*(8*ab*(yb*yb–ya*yc)+ex*(ya+2*yb+yc))/64–ya*ya*(xy–ya);
      dy = 27*(8*ab*(xb*xb–xa*xc)–ex*(xa+2*xb+xc))/64–xa*xa*(xy+xa); 
                                          /* init differences of 2nd degree */
      xx = 3*(3*ab*(3*yb*yb–ya*ya–2*ya*yc)–ya*(3*ac*(ya+yb)+ya*cb))/4;
      yy = 3*(3*ab*(3*xb*xb–xa*xa–2*xa*xc)–xa*(3*ac*(xa+xb)+xa*cb))/4;
      xy = xa*ya*(6*ab+6*ac–3*bc+cb); ac = ya*ya; cb = xa*xa;
      xy = 3*(xy+9*f*(cb*yb*yc–xb*xc*ac)–18*xb*yb*ab)/8; 

      if (ex < 0) {       /* negate values if inside self-intersection loop */
         dx = –dx; dy = –dy; xx = –xx; yy = –yy; xy = –xy; ac = –ac; cb = –cb; 
      }                                   /* init differences of 3rd degree */
      ab = 6*ya*ac; ac = –6*xa*ac; bc = 6*ya*cb; cb = –6*xa*cb;
      dx += xy; ex = dx+dy; dy += xy;                  /* error of 1st step */
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      for (pxy = &xy, fx = fy = f; x0 != x3 && y0 != y3; ) {
         setPixel(x0,y0);                                     /* plot curve */
         do {                                /* move sub-steps of one pixel */
            if (dx > *pxy || dy < *pxy) goto exit;      /* confusing values */
            y1 = 2*ex–dy;                  /* save value for test of y step */
            if (2*ex >= dx) {                                 /* x sub-step */
               fx––; ex += dx += xx; dy += xy += ac; yy += bc; xx += ab; 
            }
            if (y1 <= 0) {                                    /* y sub-step */
               fy––; ex += dy += yy; dx += xy += bc; xx += ac; yy += cb; 
            }
         } while (fx > 0 && fy > 0);                     /* pixel complete? */
         if (2*fx <= f) { x0 += sx; fx += f; }                    /* x step */
         if (2*fy <= f) { y0 += sy; fy += f; }                    /* y step */
         if (pxy == &xy && dx < 0 && dy > 0) pxy = &EP;/* pixel ahead valid */
      } 
exit: xx = x0; x0 = x3; x3 = xx; sx = –sx; xb = –xb;           /* swap legs */
      yy = y0; y0 = y3; y3 = yy; sy = –sy; yb = –yb; x1 = x2;
   } while (leg––);                                        /* try other end */
   plotLine(x0,y0, x3,y3);     /* remaining part in case of cusp or crunode */
}

Listing 14: Plotting a cubic Bézier segment

The algorithm tries to plot from either end of the curve and stops if the error values get  
confused. This happens in case of a self-intersection and especially of a cusp. The curve is 
then finished by a line.

It would be possible to test the break condition of the pixel loop just for the end point. But if  
the end point is missed due to a slight rounding error the algorithm wouldn't  stop. The 
implementation in listing 14 ensures that the curve is not plot beyond the end point.

A few further optimizations are possible like writing a separate loop for curves without loop 
(self intersection). This would reduce the overhead in the pixel loop for most the drawn 
Bézier curves. A reference could be used instead of the pointer variable if applicable.

The algorithm could be simplified if no cubic Bézier curves with a loop or cusp have to be 
rasterized. The variation for increased resolution could be omitted in that case.
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5.10 Subdividing cubic Béziers
A  complex  cubic  Bézier  curve  must  be  cut  at  horizontal  and  vertical  maximum  and 
minimum. This is accomplished by the first parametric derivative which makes the control 
points Di = n(Pi+1–Pi).

The parametric value  t of these points is calculated by the roots of the first  parametric 

derivative: 
d x
d t
=−3 t 2 xa−2 t xb xc=0 and 

d y
d t
=−3 t2 ya−2 t yb yc=0.

Each quadratic equation has none, one or two real roots. At these points Ph1, Ph2, Pv1 and 
Pv2 of the parameter t the curve must be subdivided by de Casteljau's algorithm.

The Bézier curve is reparametrized by the new range from t1 to t2:  
t=t t2−t1t2t1 [ t1≤t≤t 2] [−½≤t≤½] .

If the segment between t1 and t2 should be plot the new points of the Bézier curve make:

x0=−t1
3 xa3 t 1

2 xb−3 t1 xcx d , x1=−t 2t1
2 xa−2 t 1 xbxc t1

2 xb−2 t 1 xc xd ,

x2=−t1t 2
2 xa−2 t2 xb xct 2

2 xb−2t 2 xcxd and x3=−t 2
3 xa3 t 2

2 xb−3 t 2 xc xd . (37)

Substitution of the new parameter in the cubic Bézier equation

x=−t 3 x a3 t 2 xb−3 t xcxd

(plus the appropriate equation for y) and comparing the terms makes:

xa=t2−t1
3 xa , xb=t 2−t 1

22 xb−t1 t2 xa ,
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xc=t 2−t 1t1t 2
2 xa−4t 1t 2xb4 xc  and 

xd=−t 1t 2
3 xa6t 1t 2

2 xb−12 t1t2 xc8x d . (38)

5.11 Drawing any cubic Bézier curve
The Bézier curve is subdivided at horizontal and vertical gradient changes. These points 
are then sorted to get consecutive curve segments. Since only four points at most have to 
be sorted the simplest sorting algorithm is efficiently enough. The curve is not subdivided 
at self-intersection point since the sub-segment plot function is able to handle this case.

Another problem would arise when the intermediate points P1 or P2 are rounded to integers 
due to the subdivision.  It  could  happen that  the carefully  avoided situation of  gradient 
change suddenly reappears again due to the rounding. To avoid a significant change only 
the boundary of the subdivided curve is therefore scaled to integers. For this reason the 
intermediate points of the sub-segment plot function must be of floating point type.

It is essential that the computation of the parameter t is of double accuracy especially the 
square root function. Insufficient accuracy may change the parameter of the subdivided 
curve slightly so that it does not match the necessary restrains anymore and the assert 
statement in the sub-segment function would fail.
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void plotCubicBezier(int x0, int y0, int x1, int y1,
                     int x2, int y2, int x3, int y3)
{                                       /* plot any cubic Bezier curve */
   int n = 0, i = 0; 
   long xc = x0+x1–x2–x3, xa = xc–4*(x1–x2);
   long xb = x0–x1–x2+x3, xd = xb+4*(x1+x2);
   long yc = y0+y1–y2–y3, ya = yc–4*(y1–y2);
   long yb = y0–y1–y2+y3, yd = yb+4*(y1+y2);
   float fx0 = x0, fx1, fx2, fx3, fy0 = y0, fy1, fy2, fy3;
   double t1 = xb*xb–xa*xc, t2, t[5];
                          /* sub-divide curve at gradient sign changes */
   if (xa == 0) {                                        /* horizontal */
      if (abs(xc) < 2*abs(xb)) t[n++] = xc/(2.0*xb);     /* one change */
   } else if (t1 > 0.0) {                               /* two changes */
      t2 = sqrt(t1);
      t1 = (xb–t2)/xa; if (fabs(t1) < 1.0) t[n++] = t1;
      t1 = (xb+t2)/xa; if (fabs(t1) < 1.0) t[n++] = t1;
   }
   t1 = yb*yb–ya*yc;
   if (ya == 0) {                                          /* vertical */
      if (abs(yc) < 2*abs(yb)) t[n++] = yc/(2.0*yb);     /* one change */
   } else if (t1 > 0.0) {                               /* two changes */
      t2 = sqrt(t1);
      t1 = (yb–t2)/ya; if (fabs(t1) < 1.0) t[n++] = t1;
      t1 = (yb+t2)/ya; if (fabs(t1) < 1.0) t[n++] = t1;
   }
   for (i = 1; i < n; i++)                  /* bubble sort of 4 points */
      if ((t1 = t[i–1]) > t[i]) { t[i–1] = t[i]; t[i] = t1; i = 0; }

   t1 = –1.0; t[n] = 1.0;                         /* begin / end point */
   for (i = 0; i <= n; i++) {          /* plot each segment separately */
      t2 = t[i];                         /* sub–divide at t[i–1], t[i] */
      fx1 = (t1*(t1*xb–2*xc)–t2*(t1*(t1*xa–2*xb)+xc)+xd)/8–fx0;
      fy1 = (t1*(t1*yb–2*yc)–t2*(t1*(t1*ya–2*yb)+yc)+yd)/8–fy0;
      fx2 = (t2*(t2*xb–2*xc)–t1*(t2*(t2*xa–2*xb)+xc)+xd)/8–fx0;
      fy2 = (t2*(t2*yb–2*yc)–t1*(t2*(t2*ya–2*yb)+yc)+yd)/8–fy0;
      fx0 –= fx3 = (t2*(t2*(3*xb–t2*xa)–3*xc)+xd)/8;
      fy0 –= fy3 = (t2*(t2*(3*yb–t2*ya)–3*yc)+yd)/8;
      x3 = floor(fx3+0.5); y3 = floor(fy3+0.5); /* scale bounds to int */
      if (fx0 != 0.0) { fx1 *= fx0 = (x0–x3)/fx0; fx2 *= fx0; }
      if (fy0 != 0.0) { fy1 *= fy0 = (y0–y3)/fy0; fy2 *= fy0; }
      if (x0 != x3 || y0 != y3)                     /* segment t1 - t2 */
         plotCubicBezierSeg(x0,y0, x0+fx1,y0+fy1, x0+fx2,y0+fy2, x3,y3); 
      x0 = x3; y0 = y3; fx0 = fx3; fy0 = fy3; t1 = t2;
   }
}

Listing 15: Sub-dividing a cubic Bézier curve
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The middle control points P1 and P2 could be changed to the thru points P̊1 , P̊2 by  

P1=
−5P018 P̊1−9 P̊22P3

6
and P2=

2P0−9 P̊118 P̊2−5 P3

6
. (39)
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6 Rational cubic Béziers
The parametric equation of the rational cubic Bézier makes [Marsh, 2005, p. 175]:  

B3(t)=
(1−t)3 w0 P0+ 3(1−t )2 t w1 P1+ 3(1−t) t 2 w2 P2+ t 3 w3 P3

(1− t)3 w0+ 3(1−t)2t w1+ 3(1−t) t 2 w2+ t3 w3

(40)

The weights of the implicit equation of the rational quadratic Bézier could be normalized to 
simplify the calculations without changing the curve. The weights of the end points P0 and 
P2 were distributed to the others. The same is possible for any rational Bézier of degree n. 
By comparison of the implicit  equation with normalized and not normalized weights the 
weights of the rational Bézier can be normalized by the substitution of

 w i=
w i

nw 0
n−i wn

i
. (41)

The weights of the end points P0 and Pn became now w0= wn=1.

For the cubic Bézier the normalized weights make w1=
w1

3w0
2 w3

and w2=
w2

3w0 w3
2
.

The implicit equation of the rational cubic Bézier is needed to apply the same algorithm as 
done for the previous curves. This equation gets very complex. 

Using resultants the third degree of the rational cubic Bézier curve is implicitized the same 
way as equation (25) for the non-rational curve:

            f x , y =∣d 01 d 02 d 03

d 02 d 03d 12 d 13

d 03 d 13 d 23
∣=0  where d ij=wi w j(3i )(3j)∣ x y 1

x i y i 1
x j y j 1∣ (42)

No simplification could be found to make the computation of the initial values easier as was 
for the normal cubic Bézier curve. An algorithm with the same principle is possible but too 
complex for this work. Instead algorithms are worked out to subdivide the curve and draw 
the rational quadratic segments.

6.1 Rational degree reduction
The same consideration as chapter 5.1 for non-rational cubic Béziers could be made to 
approximate rational Bézier curves by quadratic ones. 

To keep the deviation small it is again advisable to take the subdivision in three steps:

• the curve is subdivided at horizontal and vertical stationary points (chapter 6.3)
• the curve is subdivided at the inflection point (chapter 6.4)
• the curve is subdivided in two rational quadratic Béziers 

The following considerations keep the deviations small.  The cubic Bézier P0-P1-P2-P3 in 
figure 17 of chapter 5 is exactly halved (at t = ½) by DeCasteljou subdivision. The subdivi-
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sion point Pc remains exactly at the cubic Bézier curve. The intermediate points in figure 17 
of the rational cubic curve are then calculated by  

wa=w1, Pa=
3 w1 P1+ w0 P0

3 w1+ w0
, wb=w2, Pb=

3 w2 P2+ w3 P3

3 w2+ w3
,

Pc=
w0 P0+ 3 w1 P1+ 3 w2 P2+ w3 P3

w0+ 3 w1+ 3 w2+ w3
.

The two subdivided rational Bézier curves can be drawn by the algorithm of chapter 4.

6.2 Sub-dividing rational cubic Béziers
The cubic curve must be subdivided to simplify the drawing of the curve. The subdivision is 
done by finding an appropriate value of the parameter  t (for example stationary points). 
The position and the weight of the two subdivided curves have to be found. The curve in 
figure 24 is subdivided at point Pc into the two curves P0-Pa-Pb-Pc and Pc-Pd-Pe-P3.

The de Casteljau algorithm is extended for rational Béziers. The additional points are now 
calculated by the following equations:

wa Pa=(1−t )w0 P0+ t w1 P1 , wa=(1−t)w0+ t w1 ,

wb Pb=(1− t)2 w0 P0+ 2 (1−t) t w1 P1+ t2 w2 P2 , wb=(1−t)2 w0+ 2(1−t)t w1+ t 2 w2 ,

w c Pc=1−t 3 w0 P031−t 2 t w1 P131−t  t2 w2 P2t3 w3 P3 ,

w c=1−t 3 w031−t 2t w131−t t 2 w2t 3 w3 ,
wd Pd=1−t 2 w1P12 1−t  t w2 P2t 2 w3 P3 , wd=1−t 2 w121−t t w2t 2 w3 ,

w e Pe=1−t w2 P2t w3 P3 , w e=1−t w2t w3 .
By the use of equation (41) it is possible to make the weight of point Pc equal to one by 
adapting the weights of the other points.
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6.3 Root finding
The rational cubic Bézier must be subdivided at the stationary points. These points are the 
maximums  and  minimums  of  the  curve  in  x-  and  y-direction.  These  points  can  be 
calculated  by  setting  the  first  derivation  of  the  parametric  equation  (40)  to  zero.  This 

equation becomes a bit simpler by introducing the substitution of P ij=wi−w jPi P j.  

P01−2P02P033P12−2P13P23 t
4−2 2P01−3 P02P033P12−3 P13t

3
6P01−6P02P033P12t

2−22 P01−P02tP01=0.

This equation is a polynomial of the fourth degree. The analytical calculation of the roots of 
the fourth degree is possible but difficult. The following solution tries to find an algorithm 
as simple as possible.

Only  the real  roots  are  of  interest  for  this  application.  If  the  highest  coefficient  of  the 
following polynomial equations is zero the equation could be reduced by one degree. The 
coefficient is therefore by assumed to be unequal to zero.

The accuracy of the calculation needs special attention. The numbers can get quite large 
due to the powers. Rounding errors occur if such large numbers are added or subtracted 
due to the limited accuracy of the calculation.

The implementations are as simple as possible  and use a minimum of  transcendental 
functions.

6.3.1 Quadratic equation
For  the  quadratic  polynomial  equation a2 x2+ a1 x+ a0=0 the  substitution  of 

p=−
a1

2a2
, q=

a0

a2
makes the calculation easier.

The number of real roots depends on the discriminant shown in the following table:

Discriminant Number of real roots Root value(s)
p 2  < q 0 -
p 2  = q 1 x = p

p 2  > q 2 x1= p+ √ p2−q
x2=q/ x1

The calculation of x2 by the division is more stable than the negative root.

6.3.2 Cubic equation

For the cubic polynomial equation a3 x3+ a2 x2+ a1 x+ a0=0 the substitution of  

p=−
a2

3a3
, q= p2−

a1

3a3
, r=3q− p2

2
p

a0

2a3
makes  the  calculation  again  easier. 
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These definitions also show the degree relations between the coefficients which is relevant 
to avoid an underflow of floating point numbers.

The substitution  of x = z + p gets  the depressed cubic  z3−3q z+ 2 r=0.  By  Vieta's 

substitution of  z = y + q / y this equation could be turned into a quadratic equation in  y3:

y6+ 2 r y3+ q3=0. Back substitution gets the roots of the cubic equation.

The number of real roots depends on the discriminant shown in the following table: 

Discriminant Number of real roots Root value(s)
r  = 0  q = 0∧ 1 x = p

r 2  > q 3 1 y=
3 r r2−q3

x= p yq / y

r 2  = q 3 2
x1= p+ r / q
x2= p−2 r /q

r 2  < q 3 3

y=q cos13 arccos r
q3 

x1= p−2 y
x2,3=p y±3 q− y2

The last case uses the substitution of z=2√q cosθ for the depressed cubic to avoid the 
calculations of complex numbers. Dividing the equation by 2√q3 gets the cubic equation 

of 4 cos3θ−3cos θ+ r
√q3
=0. Comparison with the equation of cos3=4cos3−3cos

gets the relation of  cos3=−r
q3

. The roots are then calculated by the entries of the 

table above.

6.3.3 Quartic equation
For  the quartic  polynomial  equation a4 x4a3 x3a2 x2a1 xa0=0 the  substitution  of 

p=−
a3

4a4
, q=3 p2−

a2

2a4
, r=q− p2 p−

a1

4a4
, s= p2−2q p4 r  p−a0

a4
makes 

the calculation once again easier.

The substitution x = z + p gets rid of the cubic term: z 4−2q z2−4 r z−s=0
If r equals zero this is a quadratic equation in z2. The original quartic is then solved by:

x= p±1q±2q2s [r = 0]

If  r does not equal zero the quartic equation can be turned to the solution of a resolvent  
cubic equation by several methods [Shmakov, 2011]. The algorithm of Euler solves the 
quartic equation by the resolvent cubic equation of:

4 y3−4q y2q2s  y−r2=0
This cubic equation can be solved by the method of the previous chapter. It always has a 
positive root.
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If y is a positive root of the cubic equation then the roots of the original quartic make

x= p±1q− y±2 r / y±2 y [r ≠ 0]

The subscript of the plus/minus sign indicate the same sign of the four different solutions of 
the quartic equation. Only real roots are of interest for this application.

6.4 Rational inflection point
The calculation of the inflection point of the rational cubic Bézier is a bit more complicated 
than of the non-rational Bézier. Equation (35) is again used to get the curvature of the 
curve. The following substitution makes the computation easier:

c ijk=w i w j wk∣x i y i 1
x j y j 1
xk yk 1∣.

The inflection points of the rational cubic Bézier curve could now be determined by the 
cubic equation of  

t 3c012−c013c023−c123−t 23 c012−2 c013c023t 3 c012−c013−c012=0. (43)

The roots of this equation could be solved using the method of the previous chapter.
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7 Splines
Single  Bézier  curves of  higher  degree than cubic  get  very complicated  to draw.  More 
complex curves are made by connections of quadratic or cubic Bézier curves.

Two adjacent curves are Ck continuous if the 0th to k-th derivative of the curve is equal at 
the connection point. Thus, C0 continuity simply means the two adjacent curves share a 
common point. C1 continuity means that the two curves have in addition the same tangent 
vector.  C2 continuity means that  the second order parametric derivatives of  the shared 
endpoint equals in magnitude  and in direction.

Splines offer a great flexibility by a minimum of control handles making editing of curves 
easier. Simpler curves with fewer control points are B-splines. Only the corner points of the 
curve are defined. The additional control points are placed to automatically join the curves 
continuously. [Piegl et al., 1996]

Splines of degree one are a polygon line.

7.1 Quadratic B-splines
If the corner points  Ṗi in figure 25 are given the drawing of the curve is straight forward. 
(The yellow points are half way between the cyan.) Is it possible to calculate the points Ṗi 

(cyan) if the points Pi (green) at the curve are given?

In case the green Points at the curve are given the corner points must be computed by:
Ṗ i−16 ṖiṖ i1=8Pi , 5 Ṗ1Ṗ2=8P1−2P0 , Ṗn−25 Ṗn−1=8Pn−1−2 Pn .

The equations can be written in matrix form:
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[5 1 0
1 6 1
⋱ ⋱ ⋱

1 6 1
0 1 5

]⋅[
Ṗ1

Ṗ2

⋮
Ṗn−2

Ṗn−1
]=[

8P1 −2 P0

8P2

⋮
8Pn−2

8Pn−1−2Pn

] (44)

This tridiagonal systems of linear equations could be solved by the Thomas algorithm in 

O(n) operations by LU decomposition of the matrix A·x = d  [Thomas, 1949]:

[
a1 b1 0
c2 a2 b2

⋱ ⋱ ⋱
cn−1 an−1 bn−1

0 cn an

][ x1

x2

⋮
xn−1

xn
]=

=[1 0
l 2 1
⋱ ⋱

l n−1 1
0 l n 1

]⋅[
m1 b1 0

m2 b2

⋱ ⋱
mn−1 bn−1

0 mn
][ x1

x2

⋮
xn−1

xn
]=[

d 1

d 2

⋮
d n−1

d n
]

(45)

The matrix equation is now solved by the steps: L·U·x = d, L·y = d and U·x = y.

Comparing the terms the unknowns could be calculated by a forward sweep: 
m1 = a1 , li+1 = ci+1 /mi , mi+1 = ai+1 – bi li+1 and the temporary result y1 = d1, yi = di – yi–1 li. 

The back substitution finally calculates the desired result: xn = yn /mn , xi–1 = (yi–1 – bi–1 xi)/mi–1. 

If the input arrays could be used as temporary buffer no extra storage is needed by the 
algorithm. If this is not desirable new arrays must be allocated to store the intermediate 
results.
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void plotQuadSpline(int n, int x[], int y[])
{            /* plot quadratic spline, destroys input arrays x,y */
   #define M_MAX 6        
   float mi = 1, m[M_MAX];       /* diagonal constants of matrix */
   int i, x0, y0, x1, y1, x2 = x[n], y2 = y[n];

   assert(n > 1);           /* need at least 3 points P[0]..P[n] */

   x[1] = x0 = 8*x[1]–2*x[0];             /* first row of matrix */
   y[1] = y0 = 8*y[1]–2*y[0];

   for (i = 2; i < n; i++) {                    /* forward sweep */
      if (i–2 < M_MAX) m[i–2] = mi = 1.0/(6.0–mi);
      x[i] = x0 = floor(8*x[i]–x0*mi+0.5);           /* store yi */
      y[i] = y0 = floor(8*y[i]–y0*mi+0.5);
   }
   x1 = floor((x0–2*x2)/(5.0–mi)+0.5);    /* correction last row */
   y1 = floor((y0–2*y2)/(5.0–mi)+0.5); 

   for (i = n–2; i > 0; i--) {              /* back substitution */
      if (i <= M_MAX) mi = m[i–1];
      x0 = floor((x[i]–x1)*mi+0.5);               /* next corner */
      y0 = floor((y[i]–y1)*mi+0.5);
      plotQuadBezier((x0+x1)/2,(y0+y1)/2, x1,y1, x2,y2);
      x2 = (x0+x1)/2; x1 = x0; 
      y2 = (y0+y1)/2; y1 = y0;
   }
   plotQuadBezier(x[0],y[0], x1,y1, x2,y2);
}

Listing 16: Drawing a quadratic spline given points Pi at curve

This program even works if only a single Bézier curve has to be drawn (n = 2).

The algorithm needs a temporary floating point array to  hold the diagonal values of the 
matrix:  m1 = 5,  mi+1 = 6 –1/mi.  But  since  the  sequence  soon  limits  to  the  constant  of

lim
i∞

mi=38 the first 6 entries are accurate enough.

The Thomas algorithm could also be used for periodic splines.

7.2 Cubic splines
Figure  26 shows a cubic spline with two different end conditions. The control points are 
labeled in polar notation. Point P0,0,0 is a double point where the curvature equals zero.

A few possibilities exist for the end condition of the curve:

• open end: the curve is just drawn from P1,1,1 to Pn-1,n-1,n-1.

• tangent: the curvature at the end points P0,0,0 and Pn,n,n vanishes.
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• periodic: the curve is closed by P0,0,0 = Pn,n,n.

In case the corner points (cyan) are given the curve could be subdivided in cubic Bézier 
curves using DeBoor's algorithm. A cubic Bézier curve is extracted by the Points P i,i,i-Pi,i,i+1-
Pi,i+1,i+1-Pi+1,i+1,i+1. The line Pi-1,i,i+1-Pi,i+1,i+2 is made thirds to get Pi,i,i+1 and Pi,i+1,i+1. The line Pi-1,i,i-
Pi,i,i+1 is halved to get Pi,i,i.   

The equations for cubic splines are similar:
Ṗ i−14 ṖiṖi1=6 Pi , 7 Ṗ12 Ṗ2=12P1−3P0 , 2 Ṗn−27 Ṗn−1=12Pn−1−3 Pn .

[7 2 0
2 8 2
⋱ ⋱ ⋱

2 8 2
0 2 7

]⋅[
Ṗ1

Ṗ2

⋮
Ṗn−2

Ṗn−1
]=[

12 P1 −3P0

12 P2

⋮
12 Pn−2

12 Pn−1−3Pn
] (46)

In case the through points (yellow) are given it is again possible to compute the corner 
points. But this system of linear equations has two degrees of freedom. A possible condi-
tion for the needed restriction is to define the curvature at both ends to be zero (multiple 
knots): B''(0) = 0. This condition is shown at the beginning of the curve in figure 26 (P0,0,0).
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Figure 26: Cubic spline
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Again the Thomas algorithm helps to solve the matrix equation.

void plotCubicSpline(int n, int x[], int y[])
{                      /* plot cubic spline, destroys input arrays x,y */
   #define M_MAX 6        
   float mi = 0.25, m[M_MAX];          /* diagonal constants of matrix */
   int x3 = x[n–1], y3 = y[n–1], x4 = x[n], y4 = y[n];
   int i, x0, y0, x1, y1, x2, y2;

   assert(n > 2);                 /* need at least 4 points P[0]..P[n] */

   x[1] = x0 = 12*x[1]–3*x[0];                  /* first row of matrix */
   y[1] = y0 = 12*y[1]–3*y[0];

   for (i = 2; i < n; i++) {                         /* foreward sweep */
      if (i–2 < M_MAX) m[i–2] = mi = 0.25/(2.0–mi);
      x[i] = x0 = floor(12*x[i]–2*x0*mi+0.5);
      y[i] = y0 = floor(12*y[i]–2*y0*mi+0.5);
   }
   x2 = floor((x0–3*x4)/(7–4*mi)+0.5);             /* correct last row */
   y2 = floor((y0–3*y4)/(7–4*mi)+0.5); 
   plotCubicBezier(x3,y3, (x2+x4)/2,(y2+y4)/2, x4,y4, x4,y4);

   if (n–3 < M_MAX) mi = m[n–3];
   x1 = floor((x[n–2]–2*x2)*mi+0.5);              
   y1 = floor((y[n–2]–2*y2)*mi+0.5);
   for (i = n–3; i > 0; i--) {                    /* back substitution */
      if (i <= M_MAX) mi = m[i–1];
      x0 = floor((x[i]–2*x1)*mi+0.5); 
      y0 = floor((y[i]–2*y1)*mi+0.5);
      x4 = floor((x0+4*x1+x2+3)/6.0);              /* reconstruct P[i] */
      y4 = floor((y0+4*y1+y2+3)/6.0);
      plotCubicBezier(x4,y4,
                      floor((2*x1+x2)/3+0.5),floor((2*y1+y2)/3+0.5), 
                      floor((x1+2*x2)/3+0.5),floor((y1+2*y2)/3+0.5),
                      x3,y3);
      x3 = x4; y3 = y4; x2 = x1; y2 = y1; x1 = x0; y1 = y0;
   }
   x0 = x[0]; x4 = floor((3*x0+7*x1+2*x2+6)/12.0); /* reconstruct P[1] */
   y0 = y[0]; y4 = floor((3*y0+7*y1+2*y2+6)/12.0);
   plotCubicBezier(x4,y4, floor((2*x1+x2)/3+0.5),floor((2*y1+y2)/3+0.5),
                   floor((x1+2*x2)/3+0.5),floor((y1+2*y2)/3+0.5), x3,y3);
   plotCubicBezier(x0,y0, x0,y0, (x0+x1)/2,(y0+y1)/2, x4,y4);
}

Listing 17: Drawing a cubic spline given points at curve

The algorithm needs an additional floating point array to store the values of the forward 
sweep since the curve points are still needed to draw the computed Bézier segment. But 
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the original points could be reconstructed by the next corner point avoiding the additional 
array.

Please note that the cubic spline of size  n = 3 drawn with this algorithm is not the same 
than a single cubic Bézier although both are defined by 4 points. But the condition for this 
spline is in addition to have end points without a curvature, whereas the cubic Bézier does 
not have such a restriction.
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8 Conclusions
Rasterizing  is  a  fundamental  task  in  computer  graphics.  This  document  reworks  the 
Bresenham algorithm and extends it  for other curves like ellipses and Bézier  curves of 
quadratic  and  cubic  degree.  Generally  the  algorithm  could  be  used  to  rasterize  any 
geometric curve.

8.1 Algorithm to plot implicit equations
The calculations of the previous chapters help to define a common algorithm for the plot-
ting curves of the implicit equation f x , y =0.  

1. Since the plotting algorithm relies on a continuously positive or negative gradient the 
curve must be subdivided at stationary points at which the gradient changes its sign (or 
possibly at self intersections).
The change of the direction could also be included in the pixel loop. The subdivision is 
not necessary as long as the curve turn only occurs in one direction at the same time 
(either x or y). A change in the direction could be detected by a sign change of the 
differences. The increment values are adapted according the new direction. This solu-
tion only runs into troubles if both drawing directions change simultaneously since it 
cannot decide which of the curves to follow. 

2. The step increment is computed by successive differences of the implicit  equation:
in x-direction: dx,y  += dx+1,y, err += d10 and in y-direction: dx,y += dx,y+1, err += d01.

3. These  increments  are  initialized  by  the  differences  of  the  starting  pixel.
The differences of the error values (of spacing h) are the finite m-th order forward differ-
ences in two dimensions:

d nx n y
= 1

hx
nx hy

n y
∑
i x=0

nx

∑
iy=0

n y

−1i xi ynx

i x ny

i y f  xnx−i xhx , yn y−i y h y [nxny=m ].  

The initialization value of the polynomial equation of degree  n  makes the  n-th deriv-

ative of the implicit equation:  d nx , n y
= ∂n f
∂ xn x∂ yny

[nxny=n] .  

4. The algorithm must take special care if another part of the function comes close to the 
set pixel of the curve.

The algorithm could be used on all functions with implicit polynomial equation.

8.2 Algorithm complexity
Since any continuous function can be approximated by a polynomial function (Weierstrass 
theorem) this document provides an algorithm to draw any function nearly as fast as a line. 
More complex curves only need more additions per pixel.
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An algorithm of degree one (line) only adds the difference of the error value for every step. 
The algorithm of degree two (quadratic) additionally has to track the changes of the differ-
ences dx, dy. (Ellipses and circles are simpler since certain differences are equal due to the 
symmetry of the curve.) The algorithm of the third degree also has to track the changes of 
the changes dxx, dxy, dyy. 

The number of needed operations drawing a polynomial curve of degree n makes in Big O 
notation: n(n+1)/2 = O(n 2).
The implementation of the algorithm is limited by the complex calculations of the initializa-
tion values for the differences. Especially for curves of higher degrees these expressions 
can get quite large.

8.3 Applications
Rasterizing  is  a  fundamental  task  in  computer  graphics.  Vector  graphic  is  based  on 
geometrical primitives such as lines, circles, ellipses and Bezier curves. Such curves must 
be rasterized on every output device like displays, printers, plotters, machines, etc.

The algorithm of this document makes the drawing of curves computationally efficient and 
it is also very simple to implement. An everyday program may delegate the drawing to a 
subroutine, the operating system or basic input/output driver. But if an application wants to 
have control over the drawing process or must have access to certain details of the curve 
parameter it needs to implement the plot algorithm itself.

This type of algorithm can also be implemented directly in electronic hardware (by applica-
tion specific integrated circuits or field programmable gate arrays for example). Addition 
and compare registers are only needed for the drawing process of the pixel loop. All calcu-
lations can be realized in integer values. Potentially the parameters of the curve (initial 
values) must possibly be precalculated by a short (micro) program. 

Existing  hardware  accelerations  like  CUDA  (Compute  Unified  Device  Architecture)  of 
Nvidia or OpenGL focus on high performance 3D rendering for parallel computing architec-
ture. 2D Bézier curves are not part of a 3D computer scene. Such curves don't need a 
graphics  processor  to  be  fast  enough  for  rasterizing  and  are  mostly  ignored  by  high 
performance libraries.

8.4 Outlook
As a future work the algorithm could be extended to rasterize cubic rational Béziers and 
other familiar curves.

This  algorithm can  be  extended  to  use  anti-aliasing  since  the  calculated  error  values 
represent the distance from the curve. Error values of zero mean at the line. By extending 
this error limit it is also possible to draw thicker lines. 
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This  type  of  algorithm also  suggests  fast  implementation  for  SIMD (Single  Instruction, 
Multiple Data) instructions since values for x and y direction could be calculated independ-
ently.

8.5 Source code
The examples of this documents are available by public at the internet. The web address 
is: http://free.pages.at/easyfilter/bresenham.html

The programs have no copyright and could be used and modified by anyone as wanted.

The source code was carefully tested but are given without warranty of any kind. Use it at 
your own risk.
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